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GENERAL INTRODUCTION 

Explanation of the dissertation format. In addition to the general introduction 

and conclusions, this dissertation contains four separate papers. Each paper is to be 

submitted for publication in a refereed analytical chemistry journal, and each paper 

follows the general format of the journal in which it is to appear. The four papers are 

preceded by this general introduction and are followed by the general conclusions and 

acknowledgements. References cited in the general introduction and general conclusions 

will follow the general conclusions section. 

The research described in this dissertation was performed under the direction of 

Professor Dennis C. Johnson beginning in December of 1989. Paper 1 describes the 

pulsed electrochemical detection (PED) of amino alcohols separated by high performance 

liquid chromatography (HPLC). A multimodal HPLC column permits the separation of 

alkanolamines based on both reverse-phase and cation-exchange retention mechanisms, 

and baseline resolution of alkanolamine isomers is demonstrated. The application of 

HPLC-PED to amines and diamines is the focus of Paper 2, with separations performed 

using several different columns and mobile phases. Guidelines are provided for selecting 

the optimum PED waveform for each class of compounds, based upon results from both 

linear scan (cyclic) and pulsed voltammetry. 

Paper 3 describes the application of PED to the ring of a Au rotating ring-disk 

electrode (RRDE). Since PED at the ring of an RRDE is a novel application of pulsed 

detection, the first portion of the paper is devoted to validating the technique by 
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comparing the PED response for ferrocyanide, a compound with well-known 

voltammetric behavior, to the results from constant potential (DC) detection and RRDE 

theory. The rest of the paper describes the results obtained when the technique is used to 

monitor the adsorption of amine compounds at Au as a function of the electrode potential. 

A qualitative description of adsorption is provided for aliphatic amines, alkanolamines, 

and an amino acid, glycine. The results are discussed with respect to selecting a PED 

waveform for the HPLC of aliphatic amines. By designing the PED waveform to 

maximize adsorption, a ten-fold improvement in the signal-to-noise ratio is obtained. 

The electrochemical behavior of ethylamine at Au in alkaline solutions is the 

subject of Paper 4, which continues development of the technique first described in Paper 

3, PED at the ring of an RRDE. Ring response from PED is combined with cyclic 

voltammetry at the disk to provide a semi-quantitative description of the processes 

resulting in the oxidation of ethylamine at Au. The results are used to emphasize the 

contribution of adsorption to the overall anodic signal. Ethylamine is found to undergo 

two types of adsorption, witi: one occurring directly to the reduced Au surface, and the 

other through co-adsorption with hydroxide (OH"). 

Oxidation of aliphatic amines at metal electrodes. Many aliphatic compounds, 

including amines, traditionally have been considered as being inactive at metal electrodes. 

Adams [1] stated that "...aliphatic amines are difficult to anodically oxidize in any 

quantitative fashion" at solid metal electrodes, and Malfoy and Reynaud [2] concluded: 

"Among the 20 amino acids not containing sulfur atoms, present in the proteins, only 

tryptophan and tyrosine are selectively oxidizable at solid electrodes." It perhaps was not 
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coincidental tliat Malfoy and Reynaud made this comment in a paper studying amino acid 

oxidation at Au, a noble metal that has no empty d-orbitals to facilitate interaction with 

the lone-pair electrons of amines and thus promote reactivity. 

Despite their apparent lack of reactivity, the oxidation of amine compounds has 

been studied at various metals, including Cu [3 - 6], Ag [6 - 9], Ni [6, 10, 11], and Co 

[6, 11, 12]. For these studies, amine reactivity was generally not observed at the 

reduced metal. However, amine reactivity was attained after a layer of catalytic surface 

oxide had been formed, often by carefully pre-treating the electrode prior to placing it in 

solution. Aliphatic amines also were studied at Pt by Mann et 14], who was one 

of the first to determine the products of amine oxidation. At Pt, the oxidation of primary 

amines resulted in the formation of an aldehyde. The following (abbreviated) reaction 

mechanism was proposed by Mann to account for the experimental findings: 

RCH2NH2 ^ RCH2NH2-' + e" (1) 

RCH2NH2+ RCHNH2 + (2) 

RCHNH2 RCH=NH2-' + e" (3) 

RCH=NH2^ + H2O RCHO + NH3 + (4a) 

with the labile imine formed in Step 3 ultimately resulting in the cleavage of the C-N 

bond. 

Hampson and co-workers determined that the product formed from the oxidation 

of amines at oxidized Ag depended upon experimental conditions [9]. At high 
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concentrations of hydroxide (2.0 M or greater) and relatively low electrode potentials 

(e.g., 0.64 V vs NHE) the major product was an aldehyde. However, under most 

conditions the primary product was a nitrile. A mechanism was proposed for the 

experimental findings in which the first steps were similar to the first three steps of 

Mann's mechanism for the formation of the aldehyde, but then deviating at Step 4 to 

account for the formation of the nitrile. 

RCH=NH2+ RCH = NH + H"^ (4b) 

RCH=NH RCH=NH+ + e" (5) 

RCH=NH+ RCH=N: + H+ (6) 

RCH=N: RCH=N:-' + e" (7) 

RCH=N:+ RC = N: + H+ (8) 

And studies at most other metal and metal oxide electrodes have found that the nitrile is 

the predominant oxidation product for primary amines [15]. 

There are only a limited number of studies describing the oxidation of aliphatic 

amine compounds at Au. Warren Jackson, in a paper co-authored with LaCourse, 

Dobberpuhl and Johnson, studied the voltammetric behavior of alkanolamines in alkaline 

conditions [16]. Jackson found that anodic current for alkanolamines was derived 

primarily from the conversion of the alcohol functional group to the carboxylic acid, with 

the oxidation of ethanolamine resulting in the formation of glycine. The electrochemistry 

of amino acids at Au has been investigated [2, 17, 18], but the apparent lack of response 
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for most amino acids has allowed only limited conclusions. Bogdanovskaya et al. 

identified the products of glycylglycine (HGG) oxidation, finding evidence for the 

formation of dimers resulting from the cleavage of HGG's terminal carboxylate group 

[17]. 

In general, with the exception of amino alcohols and amino sugars, the response 

for the amine compounds at Au is indicative of a reaction that is under kinetic control. 

More specifically, the oxidation of amines appears to require the concomitant formation 

of surface oxide. This suggests that amines must adsorb to the electrode surface with the 

catalytic oxide prior to or during the oxidation process. Such a mechanism has been 

proposed by Fleishman et al. for the reaction of amines in 1.0 M KOH [6]: 

OH" + lower oxide higher oxide + HjO + e" (9) 

(Amine),^ (amine),j, (10) 

(Amine)ajs + higher oxide " radical intermediate + lower oxide (11) 

Radical intermediate product + (n-1) e~ (12) 

where n is the total number of electrons transferred in the reaction. The adsorption of 

amines at noble metals has been the focus of several papers, most notably those of 

Horanyi and co-workers, who for many years studied the phenomenon at Pt [19 - 22], 

and more recently at Au [23-25] using radiotracer isotope techniques. Amine compounds 

were shown to have strong adsorption at Au in basic solutions and little or no adsorption 

in acidic media. Aliphatic amines and amino alcohols exhibited similar adsorptive 

behavior, which was cited as evidence that both classes of amines adsorb via the amine 
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moiety. The surface coverage of amine compounds was determined to be dependent upon 

electrode potential, and occurring at less positive potentials than where their oxidation 

takes place at Au. Horanyi also found evidence for two different adsorption states, with 

one attributed to loosely physisorbed species and the other to chemisorbed species 

resulting from charge transfer [23]. 

The adsorptive behavior of amines again brings into question the state of the Au 

surface and its apparent ability to foster adsorption despite having no empty d-orbitals to 

facilitate the nucleophilic attack of the amine group's lone-pair electrons. Recent studies 

of Au surfaces have provided some indication as to how amine compounds might interact 

with the Au surface. Electrochemical and spectroscopic results indicate that, in alkaline 

solutions, hydroxide adsorption occurs at the Au surface at potentials approximately 0.6 

V negative of the onset of oxide formation at Au [26-31]. The exact nature of hydroxide 

adsorption is still in question, with some authors attributing it to simple physisorption 

without charge transfer, while others believing it to be chemisorption with at least partial 

charge transfer. Whatever its nature, hydroxide adsorption, as with other types of anion 

adsorption, begins when the electrode potential is made positive of the point of zero 

charge (PZC). 

Burke et al. [32-35] was one of the first to suggest that adsorption of hydroxide 

ion has a catalytic effect on the oxidation of aliphatic compounds at Au, and went on to 

suggest that this catalytic activity is through facilitated co-adsorption. This idea was 

supported by Vitt et al.[i6] who demonstrated that the oxidation of several dissimilar 

compounds begins at the same potential for a Au electrode in alkaline conditions, and 
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concluded that the results are indicative of a surface-catalyzed oxidation in which AuOH 

is a participant. Vitt went on to propose an oxidation mechanism for aliphatic 

compounds that, like the mechanism of Fleishman [6], begins with the adsorption of OH". 

The catalytic ability of Au for compounds like aliphatic amines apparently is provided by 

the formation of surface hydrous oxides, which tend to be transient in nature. This 

perhaps explains the conclusions reached by some authors that Au and other metal 

electrodes are not electroactive for most amine compounds, since the oxidation of amines 

requires the continuous regeneration of these transient hydrous oxides. This is also the 

basis for pulsed electrochemical detection (PED) of amines, in which the conditions 

necessary to catalyze the oxidation of amines are continuously regenerated with each 

cycle of the PED waveform, thus allowing for a sensitive and reproducible anodic 

response. 

Detection of amine compounds separated by HPLC. Because of their biological 

significance, amines are perhaps the subject of more HPLC studies than any other class 

of compounds. The majority of these studies, for obvious reasons, have been devoted to 

amino acids, with ensuing applications to other amine compounds often possible with 

only slight modifications of the separation and detection conditions. The detection of 

separated amines can be divided broadly into two categories depending upon whether or 

not derivatization is necessary to obtain reasonable signal. For underivatized amines, 

electrochemical detection using constant potential detection has been demonstrated at two 

different electrodes under flow-through conditions. Huber and co-workers used an 

oxidized Ni electrode for the detection of amino acids [37, 38], and several groups have 
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used oxidized Cu for tlie detection of a variety of amine compounds [39 - 41]. Although 

these electrode materials show that aliphatic amines can be electrochemically active at 

metal electrodes without derivatization, they have some drawbacks. The electrodes often 

require careful pre-treatment to achieve the catalytic form of the metal oxide responsible 

for amine oxidation. Also, the response tends to diminish significantly with continued 

use as catalytic activity is lost over time. Therefore, the majority of HPLC methods 

using electrochemical detection of aliphatic amine compounds have relied on pre- or post-

column derivatization of the analytes with a electroactive adduct to provide response [42-

44]. 

Because of the popularity of the UV/vis detector in HPLC, photometric detection 

has far superceded electrochemical and other forms of detection as the most common 

method of providing signal for amine compounds. Since aliphatic amine compounds are 

not natural chromophores or fluorophores, pre- or post-column derivatization with a 

spectroscopically-active adduct is necessary for photometric detection to be feasible. The 

first widely used derivatizing reagent for amines was ninhydrin [45 - 48], followed in 

more recent years by fluorescamine [49, 50], o-phthalaldehyde [51 - 53], 7-chloro-4-

nitrobenzo-2-oxa-l,3-diazole (NBD chloride) [54, 55], phenylisothiocyanate [56 - 58], 5-

dimethyl-aminonapthalene-l-sulfonyl (dansyl) chloride [59, 60], and 4-dimethylamino-

azobenzene-4'-sulfonyl (dabsyl) chloride [61. 62]. Detection limits in the femtomole 

region are possible using flourescence detection with several of these reagents, but 

derivatization tends to introduce its own set of experimental difficulties and uncertainties. 

The derivatization procedure can be time-consuming and made difficult because different 
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analytes will complexe with varying efficiencies in different matrices. The derivatized 

complex is also often labile, so the response can be sensitive to variations in the 

chromatographic retention times or separation conditions. 

The HPLC separation strategy used for aliphatic amine compounds depends on 

whether the analytes were derivatized prior to the separation procedure. Because 

aliphatic amines are hydrophilic, the HPLC techniques most commonly used for the 

separation of underivatized amines are based on ion-exchange or ion-pair 

chromatography. Normal-phase separations are also possible, but the mobile phases 

typically used with this type of HPLC often interfere with both electrochemical and 

photometric detection, thus making this strategy less appealing. With the prevalence of 

pre-colum derivatization, reverse-phase chromatography has become the predominant 

separation methods for amines. There are primarily two reasons for this. One, 

companies have been able to manufacture reverse-phase columns (C18, C8, etc.) of 

consistent uniformity, so that chromatographic results are highly reproducible. Two, the 

reagents used to derivatize amines are all large and relatively hydrophobic organic 

compounds, and so allow for significant retention on reverse-phase columns and thus 

make separations possible. However, as stated earlier, derivatization does come with 

some disadvantages, and so direct detection with other separation methods often may be 

preferrable. 

HPLC-PED of amine compounds. Many aliphatic compounds, including amines, 

have been considered to be electro-inactive at metal electrodes. This is because either the 

reaction results in the adsorption of species which passivate, or "foul," the electrode 
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surface, or because the surface oxides which catalyze the reaction providing analytical 

signal are gradually exhausted with successive determinations. Pulsed electrochemical 

detection (PED) was introduced in 1983 by Hughes, Meschi and Johnson for the 

detection of aliphatic compounds separated by HPLC [63, 64]. The ability of PED to 

detect many compounds traditionally considered electro-inactive is provided by the multi-

step potential waveform. This waveform continually regenerates the conditions 

responsible for providing signal at noble metal electrodes. PED has been shown to 

provide a reproducible and sensitive response for alcohols, carbohydrates and sulfur 

compounds, and since HPLC-PED has been the subject of several recent reviews [65 -

67], it will not be reviewed here except as related to the determination of amine 

compounds. 

Polta and Johnson were the first to apply PED for the determination of amine 

compounds, specifically amino acids and amino sugars at a Pt working electrode [68, 69]. 

The Pt working electrode has been superceded in more recent years by the Au working 

electrode [70 - 72], which also has been shown to provide good signal for these 

compounds. For amino acids, a recent innovation of PED has scanned the detection 

potential into oxide formation and reduction during the detection step (Eqet)- By 

integrating the current generated during the potential scan, better limits of detection have 

been demonstrated [72]. Vandeberg and Johnson used this derivative of PED, named 

integrated voltammetric detection (IVD), to specifically improve the response for sulfer-

containing compounds, including sulfur-containing amino acids [73]. 

For alkanolamines, much of the initial work elucidating the voltammetric basis for 
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their response at Au was performed by a former member of our group, Warren Jackson, 

and the electrochemistry of alkanolamines was the focus of his dissertation [74] and a 

paper [16]. During his tenure at Iowa State, Jackson also co-authored a paper describing 

the PED of alkanolamines with separation provided by ion-pair reverse-phase liquid 

chromatography [75]. Cambell, Carson and Van Bramer also used HPLC-PED to 

determine diethanolamine (DEA) and triethanolamine (TEA) in an aluminum etching 

solution. Unlike the straight-chain alkanolamines studied by Jackson, DEA and TEA 

were found to be sufficiently hydrophobic to be separated on a reverse-phase polymer-

based column without an ion-pair reagent [76]. 

Of all mono-amine compounds, the aliphatic amines have been the least studied 

with respect to their suitability for HPLC-PED. Preliminary studies of amines have 

indicated that they are detectable by PED at both Au and Pt electrodes [77], and a 

chromatogram showing the separation of two or three different amines has been included 

in various reviews [66]. However, no references devoted primarily to the HPLC-PED of 

aliphatic amines or diamines could be found in literature. 
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PAPER 1 

PULSED ELECTROCHEMICAL DETECTION OF ALKANOLAMINES SEPARATED 

BY MULTIMODAL HIGH PERFORMANCE LIQUID CHROMATOGRAPHY* 

'From Dobberpuhl, D. A.; Johnson, D. C. J. Liq. Chromatogr., to be submitted. 
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ABSTRACT 

Pulsed electrochemical detection (PED) is used to determine amino alcohols 

separated by high performance liquid chromatography (HPLC). A multimodal HPLC 

column with both cation-exchange and reverse-phase retention modes is used with an 

acidic mobile phase, so that cationic retention of the alkanolamines is possible. Small 

alkanolamines can be eluted isocratically without any organic modifier in the mobile 

phase. Baseline resolution of alkanolamines, including positional isomers, is possible. 

Response for a representative alkanolamine, m5(hydroxymethyl)aminomethane 

(TRIS) is shown to be linear over a concentration range of better than three decades. 

The limit of detection for TRIS is 20 nM (500 fmole in a 25 jxL injection) and the 

standard deviation of the PED response for 10 ixM TRIS is better than 0.4%. HPLC-

PED is shown to permit the sensitive and precise determination of alkanolamines in both 

a biological sample (blood) and a commercial formulation (shaving gel), with minimal 

sample preparation. 
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INTRODUCTION 

Alkanolamines are used extensively by chemical and pharmaceutical industries as 

lubricants, corrosion inhibitors, emulsifying agents, and as ingredients of various 

medications. Furthermore, they are often utilized for metal surface finishing, gas 

purification, and as additives and dyes in cleaning solutions [1-2]. Because alkanolamines 

are used in many ways, and since they have been identified as pollutants in certain waste 

water effluents [3], there is a strong need to quantify alkanolamines both sensitively and 

accurately, and without extensive sample manipulation. 

Methods used to determine alkanolamines have included wet chemistry techniques, 

gas chromatography, thin-layer chromatography, and high performance liquid and ion 

chromatography (HPLC, HPIC) coupled with spectroscopic, electrochemical or 

conductivity detection. Wet chemical techniques generally are more precise than other 

analytical methods, however, their application to complex real-life matrices is made 

difficult by the need to isolate the analytes from the rest of the sample. Gas 

chromatography is possible [4-8], but the high polarity of alkanolamines makes them 

difficult to analyze in this manner. Thin-layer chromatography with photometric 

detection has been demonstrated for the analysis of jS-alkanolamines [9]. However, since 

alkanolamines possess no natural chromophore or fluorophore, this method requires that 

the alkanolamines be derivatized with a spectroscopically-active adduct prior to analysis. 

The same is true for the HPLC techniques utilizing photometric detection [10-14]. 

Derivatization techniques can be time-consuming, and quantitation sometimes is difficult 
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because the alkanolamines will derivatize with varying efficiencies in different matrices. 

Therefore, direct detection is preferable whenever possible. Conductivity detection has 

been used for the direct detection of alkanolamines separated by HPIC [15-17]. 

However, the sensitivity of conductivity detection is generally not as good as most other 

chromatographic detection methods. 

Recently, pulsed electrochemical detection (PED) coupled with HPLC has been 

shown to be a viable method for the determination of alkanolamines. LaCourse et al. 

demonstrated the separation of mono-, di- and tri-alkanolamines using a 

dodecanesulfonate salt ion-pair reagent and a silica-based CI8 reverse-phase column [18]. 

Though the determination of alkanolamines was possible at the ppb level, relatively long 

chromatographic run times (1-2 hours) were necessary to obtain reasonable separation. 

Cambell, Carson and Van Bramer also determined alkanolamines via HPLC-PED, 

employing the reverse-phase characteristics of a polymer-based column to separate 

diethanolamine (DBA) and triethanolamine (TEA) in an aluminum etching bath [2]. 

However, use of the same column (Dionex PAX-500) in our laboratory indicated that the 

smaller and more hydrophilic alkanolamines were not strongly retained, and often were 

unresolved from each other and the solvent front peak. 

Because of the hydrophilic nature of aliphatic alkanolamines, HPIC seemed to 

hold greater promise than reverse-phase HPLC as a separation technique for these 

compounds. However, a column that combines cation-exchange retention properties with 

reverse-phase retention might prove even more successful for alkanolamine separations, 

and a recent review of PED included a separation using such a column [19]. Herein we 
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provide a more complete description of alkanolamine retention on a multimodal column. 

The separation of alkanolamines is studied as a function of mobile phase composition, 

with retention measured versus both the pusher ion (Na"^) and organic modifier 

(acetonitrile) concentration in the eluent. Under optimized separation conditions, 

multimodal HPLC is shown to provide not only baseline resolution of amino alcohols of 

different molecular weights, but also of alkanolamine positional isomers. The sensitivity 

and reproducibility of the PED response is found to be better than previous HPLC-PED 

determinations of alkanolamines, largely because of chromatographic improvements made 

possible by the multimodal column. Applications of HPLC-PED for the determination of 

alkanolamines in both a commercial and a biological sample also are demonstrated. 
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EXPERIMENTAL 

Reagents. All chemicals for the chromatographic eluents were reagent grade or 

better and were used as received. Sodium acetate (Fisher) was obtained in either 

anhydrous or trihydrate form. Glacial acetic acid (Fisher) and acetonitrile (Fisher) were 

HPLC grade. All mobile phases were filtered through a 0.2 /nM nylon filter (Whatman) 

prior to use. Sodium hydroxide used to provide post-column alkalinity in the eluent was 

obtained by dilution of a commercially available 50% w/w NaOH solution (Fisher) to a 

concentration of 0.30 M. 

Ethanolamine (Fisher) and all other alkanolamines (Aldrich) used as 

chromatographic standards were of the best grade available. Perchloric acid (Fisher) for 

the dilution of some of the biological samples was reagent grade. Deionized water used 

for all mobile phase and standard solutions was obtained from a Milli-Q system 

(Millipore) after passing through two D-45 deionizing tanks (Culligan). 

Voltammetric apparatus and procedures. Pulsed voltammetry was performed at 

the disk of an AFMT28AUAU rotating ring-disk electrode (RRDE, Pine Instruments). 

Rotation of the electrode was provided by an AFMSR rotator (Pine). The counter 

electrode for the electrochemical cell was provided by a coiled Pt wire. Potentials are 

reported versus a saturated calomel electrode (SCE; Fisher Scientific). The 

electrochemical cell was made of pyrex, and had porous glass frits separating the 

individual compartments for the working, reference and counter electrodes. Potential 

control was maintained with an AFRDE4 bi-potentiostat (Pine) interfaced to a personal 



www.manaraa.com

computer (Jameco) via a DT2801-A data acquisition board (Data Translation). The 

parameters of the pulsed waveform were selected through programming written in 

ASYST version 4.0 (Keithley/Asyst) software. The electrolyte solutions were deaerated 

by passing Nj through the electrochemical cell during the experiments. 

Chromatographic apparatus. Unless noted otherwise, all chromatographic 

equipment was from Dionex Corporation. Separations utilized either a full-sized (4 x 250 

mm) or guard (4 x 50 mm) version of the PCX-500 column. Sample injection was 

provided by a pneumatically activated injector equipped with a 25 /iL sample loop. A 

GPM gradient pump and Pulsed Electrochemical Detector were interfaced to a personal 

computer (Zenith) through an AI-450 Chromatography Automation System. PED was 

performed in a flow-through cell consisting of a 1.4 mm diameter Au working electrode 

and a Ag/AgCl reference electrode. The counter electrode was provided by the upper 

half of the detection cell, which was made of stainless steel. A solution of 0.30 M 

NaOH was added post-column through a mixing tee, with constant flow maintained by a 

Postcolumn Pneumatic Controller. The post-column eluent had a final pH of about 13, 

providing the alkaline environment necessary for alkanolamine detection at the Au 

working electrode. 
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RESULTS AND DISCUSSION 

Voltammetry of alkanolamines. Pulsed voltammetric (i-E) results for a 

representative alkanolamine, m5(hydroxymethyl)aminomethane (TRIS), are shown in 

Figure 1. Pulsed voltammetry, in which the response for a given compound is measured 

as one of the parameters of a pulsed waveform is systematically varied, has been 

described previously for optimizing PED response conditions [20]. For Figure 1, the 

detection potential was stepped from -0.80 V to 4-0.75 V at 10 mV increments, 

while the oxidative cleaning potential {Eqxi^ reductive regeneration potential (£'«£d) 

were kept constant at 4-0.80 V and -0.80 V, respectively. Current was averaged for 50 

ms at each detection step after a delay period of 250 ms, and plotted as a function 

of ^DET-

In the absence of analyte (curve a), most of the current generated by pulsed 

voltammetry at the Au working electrode is due to the formation of surface oxide (AuO). 

This current becomes apparent at about 0.2 V and quickly increases as the detection 

potential is stepped to more positive values. Current for TRIS (curves b - f) begins at 

about -0.4 V and reaches an anodic plateau at more positive potentials. In the plateau 

region, the TRIS response appears to be a linear function of concentration, which is 

indicative of a mass-transport limited reaction. The response for other alkanolamines 

studied, including 2-amino-I-ethanol (ETH), 3-amino-l-propanol (PRO), 4-amino-l-

butanol (BUT), and 5-amino-l-pentanol (PEN) was similar to that of TRIS. At potentials 

greater than 0.2 V, the alkanolamine signal decreases relative to the amount of 
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Figure 1. Pulsed voltammetric response of TRIS at a Au disk electrode in 0.1 M 
NaOH. Rotation rate; 400 rev min"'. Potential waveform: Edet stepped 
from -0.80 V to 0.75 V at 10 mV increments (tDET= 300 ms, tom, = 250 
ms); Eqxd ~ 0.80 V (toxo ~ 120 ms); E^ed ~ -0.80 V (t^ED ~ 380 ms). 
Curves: (a) 0 /iM, (b) 20 /xM, (c) 40 /xM, (d) 60 /xM, (e) 80 nM, and 
(f) 100 /xM TRIS, respectively. 
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background current generated by AuO formation. Therefore, based upon these results 

from pulsed voltammetry, the optimum detection potential for alkanolamines is between 

0.0 and 0.2 V (vs. SCE) at pH 13. Since the potential for the onset of oxide formation 

varies with pH, much of the HPLC-PED work was performed at detection potentials 

between 0.0 and 0.1 V to ensure that slight changes in the eluent pH would not cause 

large changes in the background. 

Optimizing separation conditions. The separation of several alkanolamines using 

a cation-exchange/reverse-phase multimodal column is shown in Figure 2. The mobile 

phase was sufficiently acidic to ensure protonation of the amine functional group, thus 

providing the cationic form of the alkanolamines necessary for retention on the 

multimodal column. Since there is no response for alkanolamines at a Au electrode in 

acidic media, post-column addition of NaOH was used to provide the alkaline 

environment necessary for reasonable PED signal to be obtained. Sodium acetate 

(NaOAc) in the eluent provided Na"^ as the counter (pusher) ion that was necessary to 

elute the alkanolamines from the cationic portion of the multimodal column. The order 

of elution generally is from the most hydrophilic compounds to the least hydrophilic 

compounds. TRIS, with three alcohol groups, is the most hydrophilic, and therefore has 

the least retention. With the exception of ETH and PRO, baseline resolution was 

possible for the terminal amino alcohols under these conditions. 

The elution order of alkanolamines is indicative of a separation that would result 

from reverse-phase retention, but also might be possible with a simple cation-exchange 

column. To obtain a better understanding of the retention mechanism for alkanolamines 
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Figure 2. HPLC-PED of five alkanolamines. Column: Dionex PCX-500 (4 x 250 
mm). Eluent: 20 mM HOAc/60 mM NaOAc at 1.0 mL min"'. Post-
column addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: Edet 
= 0.05 V (tDET= 300 ms, toEL = 250 ms); Eqxd = 0.80 V (toxo = 120 
ms); Ered = -0-4 V (tREo = 180 ms). Peaks: (a) 4 /xM TRIS, (b) 10 
ETH, (c) 10 PRO, (d) 10 BUT, (e) 10 nM PEN. 
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and to determine the optimum separation conditions) on the multimodal column, the 

retention factors (k) of alkanolamines were measured at various concentrations of organic 

modifier and pusher ion in the mobile phase. Figure 3 shows the retention factors for 

five alkanolamines plotted versus the concentration of acetonitrile (AcN) in the eluent. It 

is evident that the retention factors for the larger and more hydrophobic alkanolamines 

(e.g., curves d - e) are most affected by the amount of AcN in the mobile phase. This 

would be expected for a retention mechanism with a significant reverse-phase component. 

The eluent AcN concentration, while not having a strong influence on the retention 

factors of the smaller alkanolamines, is critical to the separation of ETH from PRO 

(curves b and c). At AcN concentrations greater than 2% (v/v), there is virtually no 

difference in the retention factors for ETH and PRO. Instead, the best separation of 

these two compounds is obtained with no organic modifier in the eluent. Alhough 

literature supplied with the column indicates that using a mobile phase without an organic 

solvent may damage the column, we saw no indication of deterioration over several 

months of operation in this fashion. Larger alkanolamines (> C(,) also may be eluted 

using this separation strategy. However, as the hydrophobicity of the alkanolamine 

increases, the need for organic modifier in the mobile phase also increases. For 

example, to obtain reasonable elution times for the Cj through Cg alkanolamines on the 

25 cm column, a mobile phase containing between 5 and 15% AcN is suggested. 

Figure 4 shows alkanolamine retention factors versus the concentration of NaOAc 

in the mobile phase. NaOAc is used to provide Na"^ as the counter-ion (pusher-ion) for 

the cation-exchange resin. The results are consistent with an ion-exchange retention 
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Figure 3. Retention factors (k) plotted versus eluent acetonitrile (AcN) content. 
Column: Dionex PCX-500 (4 x 250 mm). Eluent: 20 mM HOAc/60 mM 
NaOAc/variable AcN at 1.0 mL min"'. Post-column addition of 0.30 M 
NaOH at 0.6 mL min '. PED waveform: Eqet = 0.05 V (tDET= 300 ms, 
^DEL ~ 250 ms); Eqxd ~ 0.80 V (toxo ~ 120 ms); Er^d = -0.4 V Ored ~ 
180 ms). Curves: (a) TRIS, (b) ETH, (c) PRO, (d) BUT, (e) PEN. 
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Figure 4. Retention factors (k) plotted versus eluent NaOAc content. Column: 
Dionex PCX-500 (4 x 250 mm). Eluent: 20 mM HOAc/variable NaOAC 
at 1.0 mL min '. Post-column addition of 0.30 M NaOH at 0.6 mL min"'. 
PED waveform: Eue-,- = 0.05 V (toet= 300 ms, Ioel = 250 ms); Eqxd = 
0.80 V (toxD = 120 ms); Ered = -0.4 V (Ireb =180 ms). Curves: (a) 
TRIS, (b) ETH, (c) PRO, (d) BUT, (e) PEN. 
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mechanism, with retention factors decreasing as the concentration of Na"^ in the eluent is 

increased. Retention factors for the various alkanolamines diverge at lower eluent 

NaOAc concentrations, indicating better separation. However, this trend is offset by 

increased peak-broadening also seen at lower NaOAc concentrations, making the ideal 

eluent NaOAC concentration between 40 and 70 mM. The concentration of acetic acid 

(HOAc) in the eluent had little effect on alkanolamine retention, providing there was 

sufficient HOAc (greater than 10 mM) to assure protonation of the amine functional 

group. 

Detection limits, linearity and reproducibility. The linear dynamic range was 

determined for the PED of alkanolamines separated by HPLC, using TRIS as a 

representative compound. Figure 5 shows the PED response for TRIS concentrations 

between 50 nM and 100 ixM. There is a linear relationship between signal and 

concentration in this region. Using linear regression analysis, the correlation coefficient 

{R-) was calculated as 0.9997 based upon eleven different concentrations. At 

concentrations greater than 200 /tM, the calibration plot begins to roll-over, and at high 

concentrations (> 2000 fxM), the PED signal changes only slightly with increasing 

alkanolamine concentration. The results shown in Figure 5 were obtained at a detection 

potential of 0.0 V to minimize the background signal. As the PV results in Figure 1 

indicate, mass-transport limited response is more likely at detection potentials between 

0.1 and 0.2 V, and so choosing the PED in this region might extend the upper limit 

of the linear dynamic range. Under the conditions shown in Figure 5, the limit of 

detection (S/N = 3) for THAM is 20 nM (500 fmol in a 25 ixL injection). 
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Figure 5. HPLC-PED signal (peak height) as a function of TRIS concentration. 
Column: PCX-500 (4 x 50 mm). Eluent: 10 mM HOAc/40 mM NaOAc 
at 1 mL min"'. Post-column addition of 0.30 M NaOH at 0.6 mL min"'. 
PED Waveform; Eqet = 0-00 V (tDET== 300 ms, tpEL = 250 ms); Eqxd = 
0.80 V (toxD = 120 ms); Ered = -0.4 V (tREo = 180 ms). TRIS 
concentrations shown from 50 nM to 100 fiM. 
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Figure 6 shows the HPLC-PED response for ten consecutive injections of 10 /zM 

TRIS. Statistical analysis of peak height data was used to calculate the relative standard 

deviation (RSD), which is less than 0.4% for the ten injections. This indicates that 

HPLC-PED provides a very reproducible response for alkanolamines. 

Isomers and other applications. The separation of alkanolamine isomers is 

shown in Figure 7. For alkanolamines of identical molecular weights, those with 

terminal amine groups are eluted before their |8-amino analogues. This may be explained 

by the relative positions of the functional groups. jS-alkanolamines have both the amine 

and the alcohol functional groups near one end of the molecule. As a result, a larger 

portion of the jS-alkanolamines' molecular structure is hydrophobic, resulting in stronger 

retention on the reverse-phase portion of the multimodal column. The concentration of 

organic modifier in the mobile phase has a greater effect on the retention of the j8-amino 

alcohols than it does on the retention of the terminal-amino alcohols, which would be the 

expected result if the jS-alkanolamines are more hydrophobic. 

The application of multimodal HPLC-PED for the determination of an 

alkanolamine in a commercial formulation is shown in Figure 8. Minimal preparation of 

the sample, a shaving gel, was required before analysis. A small portion of the sample 

was weighed and diluted by approximately 1:10,000 (w/v) in DI water and then injected. 

The resulting chromatogram exhibits only two peaks, and its simplicity is largely 

attributable to the value of the detection potential. At 0.05 V, the PED detector is fairly 

selective for organic compounds with one or more alcohol functional groups, with many 



www.manaraa.com

29 

T 
2 nC 

1 

aJLLiJjijlJjLijLii 

(—15 minutes 

Figure 6. Reproducibility of HPLC response. Column: Dionex PCX-500 (4 x 250 
mm). Eluent: 20 mM HOAc/60 mM NaOAc at 1.0 mL min"'. Post-
column addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: Edet 
= 0.06 V (toPT= 300 ms, toEL = 250 ms); Eqxd = 0.80 V (toxo ~ 120 
ms); Eked = -0.4 V (Ireo = 180 ms). Analyte: 10 /xM TRIS. 
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Figure 7. HPLC-PED of alkanolamine isomers. Column: Dionex PCX-500 (4 x 
250 mm). Eluent: 20 mM HO Ac/70 mM NaOAc at 1.0 mL min"'. Post-
column addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: Edet 

.. . ~ 0.05 V (Idet" 300 ms, tpEt ~ 250 ms); Eqxd ~ 0.80 V (toxo ~ ^20 
ms); Ered = -0.4 V (tREo = ^80 ms). Peaks: (a) 8 TRIS, (b) 20 fiM 
2-amino-l-ethanol, (c) 20 (xM. 3-amino-l-propanol, (d) 20 2-amino-
1-propanol, (e) 40 /iM 4-amino-l-butanol, (f) 40 /nM 2-amino-l-butanol, 
(g) 40 jwM 5-amino-l-pentanol, (h) 80 2-amino-l-pentanol. 
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Figure 8. HPLC-PED of commercial shaving gel. Column: Dionex PCX-500 (4 x 
50 mm). Eluent: 20 mM HOAc/60 mM NaOAc at 1.0 mL min'". Post-
column addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: Edet 
= 0.05 V (togT= 300 ms, tpgL ~ 250 ms)j Eqxd ~ 0.80 V (toxo ~ 120 
ms); Ered = -0-4 V (tREo = 180 ms). Peaks; (a) sorbitol, (b) TEA. 



www.manaraa.com

32 

possible interferents showing no response at the Au working electrode. The first peak is 

from sorbitol, one of the ingredients in the shaving gel. The second peak is 

representative of triethanolamine (TEA). The relative standard deviation for five 

determinations of TEA was better than 1.0%, thus indicating that even with very little 

sample preparation, good precision is possible. 

We also wanted to demonstrate the use of HPLC-PED for alkanolamines in a 

biological sample. TRIS, which is known clinically as Tromethamine, is used as a blood 

buffering agent [21], and recently was discovered by Pollard and co-workers to have 

possible therapeutic value in the treatment of Alzheimer's Disease [22]. Therefore, the 

determination of TRIS in a biological matrix might be of some interest. An artificial 

sample of TRIS in blood was prepared as follows: a 100 juL aliquot of human blood was 

added to 100 /nL of 2.00 mM TRIS. The sample was then diluted to 10.0 mL with either 

deionized HjO or 1.0 M HCIO4 to give a final TRIS concentration of 20 ^M. The 

solution was mixed thoroughly, centrifuged, and filtered through a 0.22 /xm syringe filter 

prior to injection. 

The results for the HPLC-PED of TRIS in blood are shown in Figure 9. The 

lower chromatogram (A) represents the response for a 20 (xM TRIS standard. The upper 

chromatogram (B) represents the results obtained for 20 (jlM TRIS in human blood. The 

recovery efficiency for TRIS in blood was dependent upon the sample diluent. When the 

sample was diluted with deionized water, the recovery efficiency was 81.6 ± 3.1% (n = 

4). When 1.0 M perchloric acid was the diluent, the recovery efficiency was 102.0 + 

2.3% (/? = 4). We speculate that the lower recovery efficiency for the sample diluted in 
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Figure 9. HPLC-PED of TRIS in blood. Column: Dionex PCX-500 (4 x 250 
mm). Eluent: 20 mM HOAc/60 mM NaOAc at 1.0 mL min"'. Post-
column addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: Eqet 
= 0.05 V (tDEx= 300 ms, t^el ~ 250 ms); Eqxd ~ 0.80 V (to^o ~ 120 
ms); Ered = -0-4 V (tREo = 180 ms). Upper chromatogram: human 
blood spiked with TRIS, diluted to a final concentration of 20 jxM. Lower 
chromatogram: 20 nM TRIS standard. 
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water is the result of TRIS being complexed either intra- or extra-cellularly by the blood 

proteins. This caused the apparent HPLC-PED response to be reduced, either by 

changing the chromatographic behavior of the TRIS bound by the proteins, or by 

changing the PED response for the complexed TRIS at the Au electrode. By diluting the 

samples in acid, the blood cells were lysed and the proteins were ionized, thus releasing 

the bound TRIS and allowing complete recovery. Another benefit of using acid as the 

sample diluent relates to sample stability. Injections could be made several days after the 

sample was diluted with acid without any discernible decrease in the recovery efficiency. 

Other peaks in the blood sample have not been identified conclusively, except for the first 

peak, which is due to normal levels of blood sugar (glucose). 
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CONCLUSIONS 

The separation of alkanolamines was shown using multimodal high performance 

liquid chromatography. The separation relies upon both cation-exchange and reverse-

phase retention mechanisms of the mixed-bed column, and the strategy provides baseline 

resolution of alkanolamine isomers using isocratic elution. When coupled with pulsed 

electrochemical detection, the determination of alkanolamines was shown to be sensitive 

and reproducible. The limits of detection were in the nanomolar region, and a linear 

dynamic range greater than three decades. The method has the advantage of being 

rugged, with minimal sample preparation required to successfully analyze alkanolamines 

in both commercial and biological samples. 
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PAPER 2 

PULSED ELECTROCHEMICAL DETECTION OF AMINES AND DIAMINES 

SEPARATED BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY* 

'From Dobberpuhl, D. A.; Hoekstra, J. C.; Johnson, D. C. Anal. Chem., to be 
submitted. 
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ABSTRACT 

Pulsed electrochemical detection (PED) is used to determine aliphatic amines and 

diamines separated by high performance liquid chromatography (HPLC). The PED 

detection potentials are selected based upon results obtained from both cyclic and pulsed 

voltammetry. The optimum detection potential for amines is approximately 0.2 V (vs. 

SCE) in alkaline conditions, whereas for diamines it is between 0.4 V and 0.6 V. 

Aliphatic amines are separated on a high-capacity "multimodal" column that 

permits both cation-exchange and reverse-phase retention of analytes. The protonated 

form of the amines, necessary for cationic retention, is obtained by using an acidic 

mobile phase. Diamines, which are divalent in acidic eluents, are separated using a low-

capacity cation-exchange column. The retention factors for both amines and diamines are 

measured against several different mobile phase parameters to find the optimum eluent 

composition, and to evaluate the chromatographic basis for the respective separation 

strategies. 

HPLC-PED is shown to be both an accurate and sensitive method for the 

determination of amine compounds. Limits of detection for 25 ^L injections are 100 nM 

(2.5 pmol) for amines and 200 nM (5.0 pmol) for diamines. The relative standard 

devation (RSD) for eight successive injections of 100 /xM ethylamine is 0.32%, indicating 

good reproducibilty. 
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INTRODUCTION 

Aliphatic amines serve as precursors in dyes and pharmaceuticals, and are used as 

stabilizers, emulsifiers and corrosion inhibitors in various formulations [1]. In addition, 

amines are found in biological systems as products of amino acid metabolism. Diamines 

also are biogenic, and their concentrations are indicative of specific carcinomas. In organ 

transplant recipients, the concentration of some diamines is a measure of how strongly the 

body is rejecting the tranplanted tissue [2-4]. They are also a measure of spoilage in 

food stuffs, and are especially important in determining the freshness of seafood and 

other meats [5-7]. Therefore, there is a strong need to quantify amines and diamines 

accurately, reproducibly, and without extensive sample manipulation. 

Amines and diamines have been determined by many methods including wet 

chemical techniques [8, 9], thin-layer chromatography [10], gas chromatography [11 - 13] 

and recently capillary electrophoresis with indirect UV detection [14]. High performance 

ion chromatography (HPIC) also has been employed with conductometric detection [15 -

17]. However, the most common method for the determination of amine compounds is 

high performance liquid chromatography (HPLC) with either fluorescence [18 - 21] or 

UV/vis detection [22 - 24]. Because amines are not naturally chromophoric or 

fluorophoric, most photometric detection methods rely on the derivatization of the 

analytes with a spectroscopically-active adduct. Although this is what makes photometric 

detection practical, there are several potential drawbacks. The derivatization procedure 

can be time-consuming, and problematic because analytes will complex with varying 

r ^ 
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efficiencies in different matrices. In addition, the derivatizing agents are often quite toxic 

and, therefore, necessitate additional consideration in the disposal of chromatographic 

waste. Finally, derivatization often results in a complex that is labile, so that variations 

in separation conditions or retention times can alter the response. With all of these 

possible complications, we believe that direct detection is preferable whenever possible. 

In our laboratories, pulsed electrochemical detection (PED) at noble metal 

electrodes has been used with HPLC to determine many aliphatic compounds, including 

amino acids, amino sugars, and amino alcohols [25 - 29]. The multi-step PED waveform 

continuously cleans and reactivates the working electrode, thus providing for continuous 

detection of aliphatic compounds previously considered inactive at noble metal electrodes. 

In this paper, PED is applied to aliphatic amines and diamines separated by HPLC. 

Several different columns and mobile phases are used. Amines are separated on both a 

silica-based CI8 column and a polymer-based multimodal reverse-phase/cation-exchange 

column, and the chromatographic basis for each method is evaluated. Diamines are 

separated on a low-capacity cation-exchange column. For all separations, the mobile 

phase is made sufficiently acidic to assure protonatation of the amine functional group. 

With the CIS column, acidic conditions reduce the interaction between the amines and 

the uncapped silanol groups of the silica support, thus improving the peak shapes. For 

multimodal and cation-exchange columns, the acidic eluent generates the ionized form of 

amines and diamines necessary for reasonable retention. Post-column addition of sodium 

hydroxide provides the alkaline environment necessary for PED signal at a Au working 
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electrode. The method is shown not only to be both accurate and sensitive, but also 

reproducible. 
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EXPERIMENTAL 

Reagents. All reagents were used as received. Acetonitrile (Fisher) and glacial 

acetic acid (Fisher) were HPLC grade. Sodium acetate, sodium nitrate and nitric acid 

(Fisher) were reagent grade or better. Deionized water used in the preparation of eluents 

and standard solutions was obtained from a Milli-Q system (Millipore) after passing 

through two D-45 deinionizing tanks (Culligan). All mobile phases were filtered through 

a 0.2 /xm nylon filter (Whatman) prior to use. Sodium hydroxide used for the supporting 

electrolyte in the voltammetric experiments and also to provide post-column alkalinity in 

the HPLC eluents was obtained by dilution of a commercially available 50% w/w NaOH 

solution (Fisher). Methylamine (Fisher), and ethylamine (Kodak, Sigma) were practical 

grades of 40% and 70% w/V solutions in water, respectively. All other amines (Aldrich, 

Chem Service) were of the highest concentration available, as were the diamines 

(Aldrich). 

Voltammetric apparatus and procedures. Cyclic and pulsed voltammetry were 

done at the disk of an AFMT28AUAU rotating ring-disk electrode (RRDE, Pine 

Instruments), with rotation of the electrode provided by an AFMSR rotator (Pine). The 

electrochemical cell was made of pyrex, and had porous glass frits connecting the 

separate chambers for the working, reference and counter electrodes. The counter 

electrode for the electrochemical cell was provided by a coiled Pt wire, and all potentials 

are measured versus a saturated calomel electrode (SCE; Fisher Scientific). 

Voltammetric data was obtained using an AFRDE4 bi-potentiostat (Pine) interfaced to a 
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personal computer (Jameco) via a DT2801-A data acquisition board (Data Translation). 

For cyclic voltammetry, potential control was maintained solely through the potentiostat. 

For pulsed voltammetry, the potentiostat was placed under computer-control. ASYST 

version 4.0 (Keithley/Asyst) software was used to write the programs that determined the 

parameters of the pulsed waveforms. All solutions were deaerated before and during the 

experiment by bubbling Nj throught the electrochemical cell's working electrode 

compartment. 

HPLC system and procedures. Amines were separated on either a 3.9 x 150 

mm C18 reverse-phase column (Phenomenex) or with either the guard version (4 x 50 

mm) or full-sized version (4 x 250 mm) of the PCX-500 column (Dionex). Diamines 

were separated on a 4 x 250 mm CS-14 column (Dionex) Sample injection was 

provided by a pneumatically-controlled injector with a 25 sample loop. A GPM 

gradient pump and Pulsed Electrochemical Detector (Dionex) were interfaced to a 

personal computer (Zenith) through an AI-450 Chromatography Automation System 

(Dionex). The flow-through detection cell consisted of a 1.4 mm diameter Au working 

electrode and an Ag/AgCl reference electrode. The counter electrode was provided by 

the stainless steel upper-half of the detection cell. A Postcolumn Pneumatic Controller 

(Dionex) was used to regulate the post-column addition of sodium hydroxide. 
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RESULTS AND DISCUSSION 

Voltammetry of amines and diamines. To determine the optimum detection 

potential (Eoct) for the PED of amines and diamines, cyclic and pulsed voltammetry were 

performed at the disk of a rotating ring-disk electrode. Figure 1 shows the current versus 

potential (i-E) for ethylamine at a Au working electrode in 0.1 M NaOH. Curve a is the 

residual, and represents the response of the Au electrode in the absence of analyte. The 

residual has several features. As the potential is scanned positive of 0.1 V, anodic 

current is obtained for the formation of surface oxide (AuO). Oxide formation continues 

to the positive scan limit, where there is additional anodic current from oxygen evolution 

occurring through solvent electrolysis. Upon initiation of the negative scan at 0.7 V, the 

response at the Au electrode quickly decays to near zero. As the potential is scanned 

negative of 0.1 V, the residual shows a large cathodic peak resulting from the stripping 

of surface oxide that was formed on the positive scan. 

Curves b through d represent the voltammetric response for different 

concentrations of ethylamine. Anodic current for ethylamine is generated concurrently 

with the formation of AuO, and formation of surface oxide is believed to catalyze the 

amine oxidation. Current for ethylamine is seen throughout the entire oxide formation 

region, but the signal is maximized relative to the background at a potential of about 0.2 

V, at the onset of oxide formation. There is some correlation between amine signal and 

concentration, though the amount of current generated by the oxidation of ethylamine 

indicates that the reaction is not mass-transport limited. Instead the reaction appears to 
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Figure 1. Cyclic voltammetric response of ethylamine at Au RDE in 0.10 M NaOH. 
Rotation speed: 400 RPM. Scan rate: 100 mV s"'. Curves: (a) residual; 
(b) 20 juM ethylamine; (c) 40 /xM ethylamine; (d) 80 /iM ethylamine. 
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be primarily under surface-control, which would be expected for a reaction catalyzed by 

the formation surface oxide. 

The response for ethylenediamine (EDA) using cyclic voltammetry is shown in 

Figure 2. Relative to ethylamine, EDA exhibits greater anodic current per unit 

concentration throughout the entire oxide formation region. The response for EDA, like 

ethylamine, appears to be dependent upon the formation of surface oxide, with the largest 

signal-to-background ratios obtained at potentials less than 0.2 V. However, in this 

region, EDA response shows almost no dependence upon concentration, and so a more 

positive PED detection potential provide better results for diamines. 

Results from pulsed voltammetry (PV), shown in Figure 3, provide further 

support for using a more positive detection potential with diamines. An experimental 

design for using PV to optimize PED waveforms has been described previously [30]. To 

perform the PV experiment, the detection potential was stepped from -0.80 V to -t-0.75 

V at 10 mV increments. The oxidative cleaning potential (f^oAu) ^"d reductive 

regeneration potential {E^ED) were -0.80 V and +0.80 V, respectively. At each detection 

step, the current was measured during the sampling time (r,^) after a delay period {foEd-

Unlike the CV experiments, the PV experiment was done in a supporting electrolyte 

containing 15% acetonitrile (AcN) to simulate typical HPLC conditions. The PV results 

(Figure 3) indicate that the presence of AcN severely attentuates the response for EDA at 

the Au working electrode at potentials less than 0.2 V. However, there is still good 

response at potentials between 0.4 V and 0.6 V, and so a PED detection potential in this 

region is much more effective for diamines with AcN present in solution. 
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Figure 2. Cyclic voltammetric response of ethylenediamine (EDA) at Au RDE in 
0. lOMNaOH. Rotation speed: 400 RPM. Scan rate: 100 mV s"'. 
Curves: (a) residual; (b) 20 fiM EDA; (c) 40 /tM EDA; (d) 80 EDA. 
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Figure 3. Pulsed voltammetric response of EDA at Au RDE in 0.10 M NaOH/15% 
acetonitrile (AcN). Rotation rate: 400 rev min"'. Pulsed waveform: Edet 
stepped from -0.80 V to 0.75 V at 10 mV increments (Idet^ 300 ms, toEL 
= 250 ms, tflvt]- == 50 ms)j Eqxd ~ 0.80 V (toxo ~ ^20 ms); Ered ~ 
-0.80 V (tRED = 380 ms). Curves: (a) 0 /xM, (b) 20 /xM, (c) 40 mM, 
(d) 60 /<M, (e) 80 fiM, and (f) 100 EDA, respectively. 
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Pulsed voltammetry of ethylamine was also performed in supporting electrolytes 

containing various concentrations of AcN, and, as with EDA, AcN attenuated the amine 

response at - 0-2 V. However, the separations described required less AcN for 

amines than for diamines, and the results will indicate that reasonable response is possible 

for amines when using a detection potential of 0.2 V. When using mobile phases 

containing high concentrations of an organic modifier, a detection potential in the 0.4 V 

to 0.6 V region is more suitable for obtaining optimum PED response for amines. 

Separation of aliphatic amines on a C18 column. The first attempt to separate 

aliphatic amines was made using a silica-based C18 column, and initial results were not 

very promising. Most analytes eluting with the system peak (void volumn) with only the 

largest amines (> Cj) showing any retention whatsoever. Though not desirable, this lack 

of retention was expected, since the small hydrophilic aliphatic amines had not been 

derivatized with a hydrophobic adduct prior to their separation, nor had any ion-pair 

reagent been included in the eluent. After several week of using the CI8 column, the 

results in Figure 4 were obtained. The separation of several amines was possible, though 

resolution of the methylamine, ethylamine and n-propylamine peaks was still not 

achieved. A mobile phase containing small amounts of acetic acid significantly improved 

peak shapes in comparison to neutral or slightly alkaline eluents. It was concluded that 

the acidic mobile phase protonated the amine functional group, thus minimizing unwanted 

interaction between the analytes and the uncapped silanol groups of the silica-based 

column. The retention times of the amines shown in Figure 4 continued to increase with 

successive chromatographic runs, and examination of results from earlier separations on 
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Figure 4. HPLC-PED of aliphatic amines using a silica-based reverse-phase column. 

Column: Phenomenex Bondclone C18 (3.9 x 150 mm). Eluent: 0.15% 
HOAc at 0.8 mL min"'. Post-column addition of 0.30 M NaOH at 0.4 mL 
min '. PED waveform: Eqet = 0.20 V (tDET= 300 ms, tpEL = 250 ms, 
^iNT ~ nis); Eqxd ~ 0.80 V (tgxo ~ 120 ms); Ered = -1.0 V (tnEo ~ 
180 ms). Peaks: (a) 10 juM ethylamine, (b) 10 fiM n-butylamine, (c) 10 
IxM n-pentylamine, (d) 10 fxM n-hexylamine, (e) 10 nM n-heptylamine. 
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the same column indicated that the migration of retention times had been occurring 

continuously with column use. Eventually, even the smallest amines began to elute as 

broad peaks with retention times of several minutes, and the experiments soon were 

discontinued. The behavior exhibited by the amines on the silica-based column is 

indicative of gradual hydrolysis of the C18 stationary phase, which caused an increase in 

the interaction between the amines and the exposed uncapped silanol groups. Therefore, 

the separation shown in Figure 4 may not be so much be the consequence of reverse-

phase retention on the CI8 stationary phase, but instead be the result of normal-phase 

type retention on the silica support. 

Attempts were made to duplicate the results shown in Figure 4 with a new silica-

based column. Almost no retention was obtained for any of the aliphatic amines. Use of 

a polymer-based reverse-phase column also resulted in little or no retention for most 

aliphatic amines. The experiments tend to support the conclusions that the retention of 

amines on the older silica-based column were not through reverse-phase interaction. The 

experiments also conclusively showed that a reverse-phase separation of underivatized 

aliphatic amines was not practical, because they are too hydrophilic to have sufficient 

retention on the hydrophobic stationary phase. 

Separation of amines on a multimodal column. Since simple reverse-phase 

separation of underivatized amines was not feasible, other separation methods were 

considered. Previous work had shown that the separation of alkanolamines was possible 

using a Dionex PCX-500 column [31], which has a multimodal stationary phase with both 

reverse-phase and cation-exchange retention capabilities. The separation of several small 
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amines on the PCX-500 column is shown in Figure 5. The mobile phase again was made 

acidic to ensure protonation of the amine function group, thus permitting cationic 

retention in addition to reverse-phase retention on the multimodal column. With the 

exception of methylamine and ethylamine, baseline resolution is possible for all n-amines, 

using only a 5.0 cm column. Amines larger than those shown in Figure 5 could be 

eluted by increasing the concentration of organic modifier in the mobile phase. 

To determine optimum separation conditions, amine retention factors (k) were 

measured under different eluent conditions. Figure 6 shows k for several amines plotted 

versus the percentage of organic modifier (AcN) in the mobile phase. Retention factors 

for all amines were dependent on the concentration of organic modifier and, as expected 

for a separation with a significant reverse-phase component, the AcN content had a 

greater effect on the retention of the larger, more hydrophobic, analytes. An AcN 

concentration of 10% was concluded to provide the best separation of the compounds 

shown in Figure 6. At AcN concentrations greater than 10%, the capacity factors for the 

small amines were too similiar to provide for sufficient resolution. At AcN 

concentrations less than 10%, larger amines were retained too strongly on the column, 

and therefore required excessive chromatographic run times in order to be eluted. 

Figure 7 shows the retention factors for the same series of amines versus the 

amount of sodium acetate (NaOAc) in the mobile phase. The NaOAc provided Na"^ as 

the eluent counter-ion (pusher ion) required for the cation-exchange mode of the column. 

Increasing the NaOAc concentration resulted in decreasing k, indicating that the 

separation has a significant cation-exchange component. The ideal NaOAc content in the 
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Figure 5. HPLC-PED of aliphatic amines using a multimodal column. Column: 
Dionex OmniPac PCX-500 (4 x 50 mm). Eluent: 30 mM HOAc/80 mM 
NaOAc/10% AcN at 1.0 mL min"'. Post-column addition of 0.30 M 
NaOH at 0.6 mL min"'. PED waveform: Edet = 0.20 V (tDET= 300 ms, 
^DEL ~ 250 ms, t[ivrr = 50 ms); Eqxd ~ 0.80 V (toxo ~ 120 ms); Ei^^q = 
-0.4 V (tRED = 380 ms). Peaks: (a) 50 /xM ethylamine, (b) 50 /xM 
n-propylamine, (c) 50 /iM n-butylamine, (d) 50 ixM n-pentylamine, 
(e) 50 jj-M n-hexylamine. 
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Figure 6. Amine retention factors (k) plotted versus the amount of acetonitrile (AcN) 
in eluent. Column: Dionex OmniPac PCX-500 (4 x 50 mm) Mobile 
phase: 30 mM HOAc/80 mM NaOAc/variable AcN at 1,0 mL min"'. 
Post-column addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: 
Euet ~ 0.20 V (t[)£T= 300 ms, t^gL ~ 250 ms, tn^j ~ 50 ms); Eqxd ~ 
0.80 V (toxD = 120 ms); Ereu = -0.4 V Ored = 380 ms). Curves: 
(a) ethylamine, (b) n-propylamine, (c) n-butylamine, (d) n-pentylamine, 
(e) n-hexylamine. 
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Figure 7. Amine retention factors (k) plotted versus the concentration of NaOAc in 
eluent. Column: Dionex OmniPac PCX-500 (4 x 50 mm). Mobile phase: 
30 mM HOAc/variable NaOAc/10% AcN at 1.0 mL min"'. Post-column 
addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: Edet = 
0.20 V (tdet= 300 ms, Idel = 250 ms, 1,^ = 50 ms); Eqxd =0.80 V 
(toxD = 120 ms); Ered = -0.4 V (tRED = 380 ms). Curves: 
(a) ethylamine, (b) n-propylamine, (c) n-butylamine, (d) n-pentylamine, 
(e) n-hexylamine. 
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mobile phase was between 40 mM and 80 mM, for the same reasons as cited earlier for 

AcN. At less than 40 mM, larger amines are retained too strongly on column, and at 

concentrations greater than 80 mM, the retention times of the smaller amines are too 

similar to achieve baseline resolution. 

The relationship between PED signal and amine concentration is shown in Figure 

8. The response is not linear except over a narrow concentration range near the limits of 

detection. Such a result could be expected from the voltammetric data which also showed 

that the response for amines was not a linear function of concentration. Instead the 

response for amines, whether using voltammetry or PED, appears to be derived from 

species that have undergone adsorption to the electrode surface, and which are oxidized 

concurrently with the formation of AuO. Whether the response is under surface-control, 

mass-transport control, or a combination of both, a linear relationship is expected 

between inverse signal (1//) and inverse concentration (l/Q [32]. As shown in Figure 9, 

such a relationship does exist for amines (R- > 0.997 for 10 concentrations ranging from 

200 nM to 200 fiM), and so calibration plots can be made in this manner. 

To determine the method's reproducibility, signal was measured for eight 

consecutive injections of a 100 [JLM ethylamine standard, shown in Figure 10. The 

response is very consistent, with a relative standard deviation of 0.32%. Under the 

conditions of Figure 10, the limit of detection (S/N = 3) for the HPLC-PED of amines 

was about 100 nM (2.5 pmol in a 25 fxL injection). 

A separation of a more complex mixture of aliphatic amines is shown in Figure 

11, this time using the 25 cm version of the PCX-500 column. By using the full-sized 
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Figure 8. HPLC-PED signal versus concentration. Analyte: methylamine. Column: 
Dionex OmniPac PCX-500 (4 x 50 mm) Mobile phase: 40 mM HOAc/80 
mM NaOAc/10% AcN at 1.0 mL min"'. Post-column addition of 0.30 M 
NaOH at 0.6 mL min"'. PED waveform: Eqet = 0-20 V (Idet^ 300 ms, 
^DEL ~ 250 ms, tifjT = 50 ms); Eqxu ~ 0.80 V (toxo ~ ^20 ms); Ereb = 
-0.4 V (Ired = 380 ms). 
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Figure 9. Calibration curve for HPLC-PED. Analyte: methylamine. Column: 
Dionex OmniPac PCX-500 (4 x 50 mm) Mobile phase: 40 mM HOAc/80 
mM NaOAc/10% AcN at 1.0 mL min"'. Post-column addition of 0.30 M 
NaOH at 0.6 mL min"'. PED waveform: Edet = 0.20 V (Idet^ 300 ms, 
^DEL ~ 250 ms, tusTT" ~ ms); Eqxd ~ 0.80 V (toxo ~ 120 ms); Ereu = 
-0.4 V (tRED = 380 ms). 
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Figure 10. Reproducibility of HPLC-PED response for amines; Analyte 100 fiM 
ethylamine. Column: Dionex OmniPac PCX-500 (4 x 50 mm) Mobile 
phase: 40 mM HOAc/80 mM NaOAc/10% AcN at 1.0 mL min"'. Post-
column addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform: Edet 
= 0.20 V (tDET= 300 ms, toEL = 250 ms, ti^T = 50 ms); Eqxd = 0.80 V 
('oxD ~ 120 ms); Ereo = -0.4 V (t^ED ~ 380 ms). 
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Figure 11. HPLC-PED of aliphatic amines on a full-sized multimodal column. 
Column: Dionex OmniPac PCX-500 (4 x 250 mm) Mobile phase: 
30 mM HOAc/100 mM NaOAc/10% AcN at 1.0 mL min"'. Post-column 
addition of 0.30 M NaOH at 0.6 mL min"'. PED waveform; Eqet = 
0.60 V (tuet= 300 ms, Iuel = 250 ms, t^ = 50 ms); Eqxd = 0-80 V 
Ooxu = 120 ms); Ered = -0.4 V Ored = 380 ms). Peaks (100 /xM): 
(a) methylamine; (b) ethylamine; (c) n-propylamine; (d) pyrrolidine; 
(e) isobutylamine; (0 n-butylamine; (g) isopentylamine; (h) n-pentylamine. 
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column, baseline resolution is achieved under isocratic conditions for methylamine and 

ethylamine, a result that was not possible using the 5 cm column. The separation of 

positional isomers also is demonstrated. Unlike the separations shown above, the 

response in Figure 11 was generated using a ~ V. Since this potential is well 

into the oxide formation region for the Au working electrode, there is a larger 

background signal and, ultimately, more noise apparent in the PED response. 

HPLC-PED of diamines. Attempts to separate diamines on the PCX-500 column 

proved unsuccessful. Most of the diamines would not elute even with large 

concentrations of pusher ion and organic modifier in the mobile phase, indicating 

extremely strong interaction with the stationary phase. This is perhaps because, in acidic 

media, the divalent state of diamines causes excessive affinity for the cation-exchange 

sites on the multimodal column. Using eluents that included divalent pusher ions did not 

noticeably reduce diamine retention, and so other chromatographic columns were 

considered. 

The separation of diamines was possible on a Dionex CS-14 column, as shown in 

Figure 12. The CS-14 column contains a polymer-based stationary phase functionalized 

with a low-capacity carboxylic acid. Relative to the sulfonic acid of the PCX-500 

column, the carboxylic acid is a much weaker cation-exchange material, and so diamines 

exhibit significantly less retention on the CS-14 column. The CS-14 column also is not 

designed specifically to promote hydrophobic interaction, as reflected by the diamine 

elution order. Straight-chain diamines are eluted from largest to smallest, and their 

relative retentions may be attributed to the charge densities. Cadavarine 
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Figure 12. HPLC-PED of aliphatic diamines. Column: Dionex lonPac CS-14 (4 x 
250 mm). Eluent: 50 mM HNO3/3O mM NaOAc/15% AcN at 1.0 mL 
min"'. Post-column addition of 0.30 M NaOH at 0.6 mL min"'. PED 
waveform: Edet = 0.40 V (tuCT= 300 ms, Idel = 250 ms, Iint = 50 ms); 
Eoxd = 0.80 V (toxd = 120 ms); Ered = -0.8 V (Ired = 380 ms). Peaks; 
(a) 100 nM imdidazole, (b) 100 fiM 1,5-diaminopentane (cadavarine), 
(c) 100 fiM 1,4- diaminobutane (putrescine), (d) 100 
1,3-diaminopropane (PDA), (e) 100 fiM 1,2-diaminoethane (EDA). 
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(1,5-diaminopentane) has the smallest charge-to-mass ratio, and so is the first to be 

eluted. Only imidazole, a cyclic diamine, elutes before cadavarine. This perhaps is due 

to imidazole's structure preventing both amine functional groups from interacting 

effectively with the cation-exchange sites of the stationary phase. 

For the separation shown in Figure 12, the PED detection potential was chosen to 

be 0.4 V. As illustrated by the cyclic and pulsed voltammetry results discussed earlier, 

this is within the range of optimum detection potentials for diamines in solutions 

containing AcN. Because this potential is well into oxide formation at the Au working 

electrode, there is a relatively large background signal. Therefore, detection limits for 

diamines are not as good as those for amines. The LOD for diamines under the 

conditions described in Figure 12 is 200 nM (5 pmole in a 25 injection). 

The effect of NaNOs eluent concentration on diamine retention is shown in Figure 

13. The concentration of sodium pusher ion has a much smaller effect on diamine 

retention with the CS-14 column than it has on amine retention with the PCX-500 

column. This is attributed to the different ion-exchange materials for each of the 

columns, and their relative affinities for sodium. The sulfonic acid of the PCX-500 

column has a higher affinity for Na^ than does the carboxylic acid of the CS-14 column. 

Because it is a weak acid, the CS-14 stationary phase instead has a preference for 

hydronium ion. Hence, small changes in [H"^] can shift retention times significantly, as 

illustrated by Figure 14, in which diamine retention factors are plotted versus the 

concentration of HNO3 in the mobile phase. Relative to NaNOj, eluent HNO3 

concentration has a much larger effect on diamine retention. To obtain the best 
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Figure 13. Diamine retention factors (k) plotted versus the concentration of NaNOs 
in eluent. Column: Dionex lonPac CS-14. Mobile phase: 25 mM 
HNOa/variable NaN03/15% AcN at 1.0 mL min"'. Post-column addition 
of 0.30 M NaOH at 0.6 mL min"'. FED waveform: Edet = 0-40 V 
(toET" 300 ms, togL ~ 250 ms, tj^x = 50 ms); Eqxd ~ 0.80 V (toxo ~ 
120 ms); Ered = -0-8 V (Ired = 380 ms). Curves: (a) cadavarine, 
(b) putrescine, (c) PDA, (d) EDA. 
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Figure 14. Diamine retention factors (k) plotted versus the concentration of HNO3 
in eluent. Column: Dionex lonPac CS-14. Mobile phase: variable 
HNO3/25 mM NaN03/15% AcN at 1.0 mL min"'. Post-column addition 
of 0.30 M NaOH at 0.6 mL min"'. FED waveform: Eqet = 0-40 V 
(toET" 300 ms, tj)EL ~ 250 ms, tnvn- ~ 50 ms); Eqxd ~ 0.80 V (toxo ~ 
120 ms); Ered = "O-S V (tREu = 380 ms). Curves: (a) cadavarine, (b) 
putrescine, (c) PDA, (d) EDA. 
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separation of tiie C2 - Cj diamines, the mobile phase concentration of HNO3 should be 

about 20 mM. 

The effect of hydronium ion concentration on diamine retention is further 

illustrated by Figure 15, which shows the retention factors for diamines plotted versus 

increasing HNOs/NaOAc ratios. Like the carboxylate stationary phase, acetate in the 

mobile phase has a strong affinity for Therefore, even though the ionic 

concentration of the mobile phase is being varied, the HNO3 concentration is always 20 

mM greater than the NaOAc concentration. As a result, the pH is kept constant for all 

different HNOa/NaOAc values, and so diamine retention factors remain fairly consistent 

as the eluent's total ionic strength is varied. This is indicative of the dominant role that 

eluent acidity plays in controlling cationic retetention on the CS-14 column. 

It is possible to separate diamine positional isomers under the conditions of Figure 

12. However, a more impressive demonstration of the CS-14 column's capabilities is 

shown in Figure 16, in which two stereoisomers are separated. Though complete 

baseline resolution was not achieved for the cis and trans isomers of 1,2-

diaminocyclohexane, the results are still quite impressive. 
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Figure 15: Diamine retention factors (k) plotted versus HNOs/NaOAc in the eluent. 
Column; Dionex lonPac CS-14. Mobile phase: variable HNOj/variable 
NaOAc/15% AcN at 1.0 mL min"'. Post-column addition of 0.30 M 
NaOH at 0.6 mL min"'. FED waveform: Eqet = 0.40 V (tDET= 300 ms, 
^DEL ~ 250 ms, t[i,jT = 50 ms); Eqxd ~ 0.80 V (toxo ~ ^20 ms); E^ed ~ 
-0.8 V (Ired = 380 ms). Curves: (o) cadavarine, (•) putrescine, 
(A) PDA, ( ) EDA. 
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Figure 16: HPLC-PED of diamine stereoisomers. Column; Dionex lonPac CS-14 
(4 X 250 mm). Eluent: 25 mM HNO3/25 mM NaN03/15% AcN at 1.0 
mL min '. Post-column addition of 0.30 M NaOH at 0.6 mL min*'. PED 
waveform: Edet = 0.60 V (Idet^ 300 ms, toEL = 250 ms, tn^ = 50 ms); 
EQXD = 0.80 V (TOXD = 120 ms); Ered = -0.8 V (TREO = 380 ms). Peaks: 
(a) c/5-l,2-diaminocyclohexane, (b) /rfl//j-l,2-diaminocyclohexane. 

r ^ 



www.manaraa.com

71 

CONCLUSIONS 

The application of HPLC-PED to aliphatic amines and diamines was 

demonstrated. The optimumn PED detection potentials for amines and diamines were 

determined voltammetrically. For the amines, cyclic voltammetry showed that the 

optimum is ca. 0.2 V. For diamines, cyclic and pulsed voltammetry indicated that a 

more positive Eoet of between 0.4 V and 0.6 V is warranted, especially in solutions 

containing greater than 10% acetonitrile. 

Different separation methods were employed for amines and diamines. A 

multimodal column combining cation-exchange and reverse-phase retention proved to be 

most effective for separating amines. Both cation-exchange and reverse-phase retention 

contributed to the separation of amines on the multimodal column, as indicated by plots 

of retention factors versus both the concentration of organic modifier and pusher ion in 

the mobile phase. The LOD for HPLC-PED of amines was 100 nM, and the relative 

standard deviation for successive injections of methylamine was 0.32%. The multimodal 

column was not capable of eluting diamines. The inability to elute diamines was 

attributed to their divalency in acidic eluents, which caused excessive adsorption on the 

high-capacity multimodal stationary phase. Therefore, a low-capacity cation-exchange 

column functionalized with a carboxylic acid was used instead. The elution order of the 

straight-chain diamines was from largest to smallest, with a LOD of 200 nM. 
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PAPER 3. 

APPLICATION OF PULSED ELECTROCHEMICAL DETECTION TO A RING-DISK 

STUDY OF AMINE ADSORPTION AT A GOLD ELECTRODE* 

'From Dobberpiihl, D. A.; Johnson, D. C. Anal. Chem., to be submitted 
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ABSTRACT 

A new application of pulsed electrochemical detection (PED) is demonstrated in 

which PED is applied to the ring of a Au-Au rotating ring-disk electrode (RRDE). The 

technique is validated experimentally by comparing the ring response for PED to that for 

constant potential (DC) detection using ferrocyanide as a model compound. Results 

indicate that PED response at the ring electrode is in good agreement with both 

experimental and theoretical values derived from conventional ring-disk voltammetry. 

Pulsed detection at the ring of an RRDE then is used to monitor the adsorptive behavior 

of aliphatic amine compounds at the disk electrode. Simple amines (RNHj) are shown to 

exhibit potential-dependent adsorption and desorption in alkaline solutions. The behavior 

of amino alcohols is similar, suggesting that the adsorption of simple amines and 

alkanolamines is controlled exclusively by the amine moiety. The RRDE results for an 

amino acid, glycine are unlike those of other amine compounds studied. It is concluded 

that glycine's different behavior is due to the influence of the carboxylate moiety in the 

adsorption process. 

The potential dependence of amine adsorption is discussed as it applies to selecting 

a PED waveform for aliphatic amines separated by high performance liquid 

chromatography (HPLC). Specifically, the reduction potential of a PED waveform is 

modified to promote amine adsorption, thus enhancing the analytical signal obtained 

during the detection step. The separation of several simple amines is demonstrated, with 

r  ̂ 
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the response from a typical PED waveform compared to that for the PED waveform 

designed to promote amine adsorption. 
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INTRODUCTION 

The adsorption of amines on metal substrates strongly influences their overall 

behavior at these surfaces. Understanding this surface interaction therefore is important 

for many industrial and biological applications. For example, amines are often part of 

formulations designed to prevent corrosion or improve adhesion. In each application, it 

is the adsorptive behavior of amines that predominantly determines their utility. A 

thorough understanding of adsorption also advances knowledge of how amine reactions 

are catalyzed at metal electrodes. This would benefit techniques such as the synthesis of 

biologically useful peptides at metal surfaces, and in the so-called "electro-incineration" 

of amine compounds. 

With respect to analytical chemistry, understanding how amines adsorb at metal 

electrodes has strong significance for electrochemical detection methods. Since 

adsorption is believed to precede the electrochemical reaction providing analytical signal, 

electrode materials and applied potentials often are chosen based upon their ability to 

promote interaction between surface and analyte. This is of strong interest in our 

laboratories, where pulsed electrochemical detection (PED) is used with high performance 

liquid chromatography (HPLC) for the determination of aliphatic amines, amino acids, 

amino alcohols and amine sugars at noble metal working electrodes [1-4]. A more 

complete characterization of amine interaction with the electrode surface should enhance 

the fundamental understanding of processes responsible for the electrochemical signal. 

With reference to PED, this means that the parameters of the pulsed potential waveform 
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might be chosen to maximize surface coverage, and thus increase the signal obtained for 

amine compounds separated by HPLC. 

The adsorption of aliphatic amine compounds at metal surfaces has been studied 

by several methods. Techniques used to investigate the process under vacuum conditions 

include secondary-ion mass spectrometry (SIMS) [5], Auger electron spectroscopy (AES) 

[5, 6], thermal desorption spectroscopy (TDS) [6], low energy electron diffraction 

spectroscopy (LEEDS) [6], ultraviolet photoelectron spectroscopy (UPS) [6, 7], x-ray 

photoelectron spectroscopy(XPS) [8 - 10], and internal reflection-adsorption spectroscopy 

(IRAS) [8-11]. In all cited studies, the use of vacuum obviously prevented monitoring 

the adsorptive behavior in-situ, and so the results may not be applicable to 

electrochemical detection techniques. In addition, the experimental design does not 

permit adsorption to be monitored as a function of applied potential, which is important 

in optimizing electrochemical detection strategies. Other methods have allowed amine 

adsorption to be monitored while the metal substrate was in solution. Surface enhanced 

Raman spectroscopy (SERS) has been used to study the effect of amino acid adsorption 

on Ag [12]. Despite the excellent promise of this technique for measuring analyte 

interaction with a metal surface, no other application of SERS for monitoring amine 

adsorption was found. Voltammetry [13 - 16] and voltammetry combined with 

radiotracer isotopes [17 - 23] are in-situ techniques that have been proven successful for 

monitoring amine adsorption as a function of electrode potential. By design, these studies 

have proven the most valuable for determining the electrochemical behavior of amines, 

with the radiotracer isotope work by Horanyi and coworkers [18-23] being most 
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impressive. Radiotracer isotopes were used to study adsorption of amines and amino 

acids at both Pt and Au, in acid and alkaline solutions, and as a function of both time and 

applied potential. The only difficulty with applying these results to electrochemical 

detection is that radiotracer measurements typically are made over a period of minutes or 

even hours, whereas signal generally is measured at a frequency of 1 Hz or more in 

flow-through systems. 

Another experimental method which has been suggested for monitoring adsorption 

of compounds at metal surfaces is the rotating ring-disk electrode (RRDE) [24]. In a 

typical RRDE experiment, the ring is set at a constant potential where the analyte of 

interest is known to be electroactive. Current then is monitored at both ring and disk as 

the disk potential is scanned or stepped between selected cathodic and anodic potential 

limits. Since the ring electrode encircles the disk electrode, some of the analyte reaching 

the ring first must pass by the disk, and thus the ring electrode is essentially downstream 

from the disk electrode. If the disk is not producing or consuming analyte, the ring 

current should remain constant. However there are several processes which can occur at 

the disk that will change the flux of analyte to the ring. For example, if analyte is 

adsorbed at the disk, then the flux of analyte to the ring is reduced and the adsorption 

process can be measured by the resulting decrease in the ring current. Conversely, if 

analyte adsorbed at one disk potential is desorbed as the disk is scanned to a second 

potential, the subsequent elevation in analyte flux results in an increase in ring signal. 

Assuming that there is no attenuation of the ring response for the analyte, then adsorption 

and desorption at the disk can be monitored effectively by changes in ring current. The 
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RRDE may be especially useful when the interaction of the analyte with the electrode 

surface is not apparent from the disk response (e.g., adsorption without charge transfer), 

because the adsorption or desorption process is evident by the ring response. 

Examples of previous work using the RRDE to monitor adsorption include studies 

of copper on Au [24], bromide [25] and iodide [26] on Pt, and hydrogen on Pt [27]. In 

all cited studies, constant potential detection (CPD) was used at the ring while the disk 

potential was varied. It therefore seemed possible to use the ring of a Au RRDE to 

monitor the adsorptive behavior of aliphatic amines at the disk. However, using CPD at 

the ring is not effective for monitoring amine compounds, because the signal for aliphatic 

amines (and many other aliphatic compounds) quickly decays to negligible values when a 

constant potential is applied to noble metal electrodes [1 - 4]. Hence, for the ring to be 

capable of monitoring amine behavior at the disk, the conditions responsible for amine 

signal at the ring would have to be regenerated continuously. PED previously has been 

shown to maintain conditions necessary to catalyze the oxidation of amine compounds on 

Au, thus providing a sensitive and reproducible signal for these compounds separated by 

HPLC. By applying PED to the ring of a RRDE, it should be possible to monitor amine 

behavior at the disk as a function of the applied potential. 

Since this is the first application of PED to the ring of a RRDE, the response of 

the system first will be characterized using ferrocyanide, a compound with well-know 

voltammetric behavior, before extending the method to amine compounds. The ring 

response for ferrocyanide with PED will be compared to the response from CPD, and to 

the theoretical response calculated for the particular ring-disk geometry. PED at the ring 
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of the RRDE then will be shown to permit characterization of the electrochemical 

behavior for several small amine compounds at the Au disk under alkaline conditions. 

Adsorption of amines will be monitored as a function of the applied disk potential, and 

the results applied towards optimizing a potential waveform for the HPLC-PED of 

aliphatic amines. 
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EXPERIMENTAL SECTION 

Reagents. All chemicals were used as received. Potassium ferrocyanide (Fisher 

Scientific), ethanolamine (Fisher Scientific) and glycine (Sigma) were reagent grade or 

better. Ethylamine (Kodak, Aldrich) was a practical grade of 70% (w/w) in water. 

N-propylamine, n-butylamine, n-pentylamine and n-hexylamine (Aldrich) were reagent 

grade, as were the glacial acetic acid and sodium acetate (Fisher). HPLC grade 

acetonitrile (Fisher) was used for the chromatographic eluent. Deionized water for all 

standard solutions and chromatographic eluents was purified in a Milli-Q system 

(Millipore) after passing through two D-45 deionizing tanks (Culligan). Sodium 

hydroxide solutions were prepared from a commercially available 50% w/w NaOH 

solution (Fisher Scientific). All solutions used in the voltammetric experiments were 

deaerated with nitrogen gas for several minutes prior to use. Chromatographic eluents 

were pre-filtered through a 0.2 nm nylon filter (Whatman). 

Voltammetric apparatus. All RRDE data were obtained using a AFRDE4 bi-

potentiostat, AFMSR rotator, and AFMT28AUAU gold ring-disk electrode (Pine 

Instrument). The disk had an outer radius of 2.29 mm. The ring had an inner radius of 

2.46 mm and outer radius of 2.69 mm. The counter electrode was a coiled Pt wire. All 

potentials are reported versus a saturated calomel electrode (SCE; Fisher Scientific). The 

electrochemical cell was made of pyrex, and had porous glass frits separating individual 

compartments for the working, reference and counter electrodes. The potentiostat was 

interfaced to a personal computer (Jameco) via a DT2801-A data acquisition board (Data 
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Translation) and ASYST version 4.0 software (Keithley/Asyst). 

Voltammetric procedure. Prior to the experiment, the gold ring-disk electrode 

was polished on microcloth (Buehler) using a paste of 0.05 jxM alumina (Buehler) in HjO. 

The electrode then was placed in the electrolyte solution, and the potential cycled 

between oxygen and hydrogen evolution until a consistent signal for oxide formation was 

obtained at both the disk and ring. Potential control of the ring circuit then was placed 

under computer control to initiate PED. Computer programming allowed selection of the 

PED parameters (Figure 1) that determined the potential waveform applied to the ring. 

The detection potential (^oet-)' oxidative cleaning potential (Eoxd)> reduction potential 

(EUED) all could be chosen independently, as could their corresponding times, toxo 

and The detection time could be divided further into a delay time and a data 

sampling time (/;;vr)- The delay time allowed the decay of current from both double layer 

charging and oxide formation, and thus reduced the magnitude of the background signal. 

During the disk current, disk potential and ring current were sampled through the 

computer interfaced to the bi-potentiostat. The time necessary for one complete PAD 

waveform determined how often data was taken by the computer. For a typical PAD 

waveform with a total time of 500 msec, the data acquisition frequency was 2 Hz. 

During each detection step, signal was sampled several times during and then 

averaged to help discriminate against random noise. A variable resistor set between 1000 

and 2000 fi was placed in series with the ring electrode to further reduce the effect of 

system noise upon the ring signal. 
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Figure 1. Potential-time (E-t) waveform for Pulsed Electrochemical Detection (PED). 

Edet = detection potential, toE? = detection period, Idel = delay period, 
t[nt = current integration (or averaging) period; Eqxd = oxidation 
potential, toxo = oxidation period; Ered = reduction potential, tREo = 
reduction period. 
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Chromatographic system. All chromatographic equipment was from Dionex 

unless noted otherwise. A GPM gradient pump and Pulsed Electrochemical Detector 

were interfaced to a personal computer (Zenith) through an AI-450 Chromatography 

Automation System. The electrochemical detection cell was a commercially available 

flow-through type, and consisted of a 1.4 mm diameter Au working electrode and a 

Ag/AgCl reference electrode. The counter electrode was provided by the upper half of 

the detection cell, which was made of stainless steel. Separations were performed on a 

PCX-500 column (4 x 50 mm). Sodium hydroxide was added post-column through a 

mixing tee, with constant flow maintained by a Postcolumn Pneumatic Controller™. 

Final concentration of NaOH in the post-column eluent was approximately 0.1 M, 

providing a sufficiently alkaline environment for amine oxidation to occur at the Au 

working electrode. 
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RESULTS AND DISCUSSION 

Characterization of PED response at the ring with ferrocyanide. The rotating 

disk electrode (RDE) is one of the most successful hydrodynamic electrodes used in 

modern electrochemistry for determining the kinetics and mechanisms of reactions 

occurring at solid electrodes [28, 29]. The RDE benefits from the relative ease with 

which a controlled hydrodynamic flow is maintained solely through rotation of the 

electrode body, allowing a rigorous and quantitative treatment of the mass-transport 

process. Levich showed that the limiting current for a rotating disk electrode (ij ,, amps) 

can be calculated as [30, 31] 

, = 0.62nFAD '' (1) 

where n is the number of electrons passed in the reaction (eq/mol), F is Faraday's 

constant (C/eq), A is the area of the electrode (cm^), w is the electrode's rate of rotation 

(rad/s), i> is the kinematic viscosity of solution (cm^/s), and is the concentration of the 

analyte in solution (mol/cm^). Equation 1, referred to as the Levich equation, predicts 

that current for a mass-transport limited reaction will be proportional to the concentration 

of analyte and to the square root of electrode rotation rate. 

The RRDE is an extension of the RDE in which the disk electrode is encircled by 

a ring electrode. In the absence of any reaction occurring at the disk, the limiting current 

at the ring electrode is given by [32] 
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, = Q.62nF7r{Rl - R^J'^D co v-^'^C ^ (2) 

where and /?, represent the outer and inner radii of the ring electrode, respectively. 

As with the disk electrode, the limiting current for the ring electrode is proportional to 

0)"^. If the formula for the area of a disk is substituted into Equation 1, then the ratio of 

ring current to disk current under mass transport-limited conditions can be derived 

by dividing Equation 2 into Equation 1 to yield 

.3/3 . i/. ^2?" __ 

where R, is the radius of the disk electrode. 

Near the surface of a RRDE, the radial flow of solution outward from the center 

results in the ring electrode effectively being downstream from the disk electrode, and so 

some of the analyte reaching the ring must first pass by the disk. The fraction of species 

produced at the disk which is capable of being detected by the ring is referred to as the 

theoretical collection efficiency {N). As with j8^'\ is a function of the ring-disk 

geometry, and is given by [33 - 34] 

N = 1- F(a/i3)+ i3-^(l-F(a)]- (l+a+/3)-^ [1-F(l+a+/3)] (4 

where 

% 

R, R, 

I f }  

(3) 
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a (5) 

and 

arctan 
2x^^-1 1 (6) 

3^ 4 

Choosing an analyte with fast reaction kinetics allows the RRDE's response to be 

compared with the theoretical results derived from the above equations. For example, 

Equations 1 and 2 predict that the limiting current for a mass-transfer limited reaction 

should be proportional to at both the ring and the disk electrodes. Additionally, the 

experimental values of and N for a given RRDE geometry should be consistent with 

those calculated from Equations 3-6. Since pulsed detection at the ring of a RRDE is a 

novel application, the technique was first characterized using a compound with known 

electrochemical behavior. Ferrocyanide, which undergoes a one-electron oxidation to 

ferricyanide, was chosen as the model compound because of its quasi-reversible kinetics 

and well-defined electrochemical response at noble metal electrodes [35 - 38]. If the 

experimental results for ferrocyanide agreed with the expected response for a mass-

transport limited analyte, then PED could be extended to compounds such as aliphatic 

amines that had not been characterized as thoroughly in previous studies. 

Figure 2 shows the voltammetric response for Au in 0.1 M NaOH supporting 

electrolyte, with and without ferrocyanide present. Arrows on the curves indicate scan 
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direction. Curve a is the residual and represents the current from the Au disk electrode 

as potential is scanned with only supporting electrolyte present in solution. The two most 

prominent features of the Au residual are the formation of surface oxide (AuO) on the 

positive scan at potentials greater than 0.1 V, and the subsequent dissolution of surface 

oxide on the negative scan, seen as a cathodic peak also beginning at about 0.1 V. Curve 

b of Figure 2 shows the response of the disk electrode with 1.00 mM ferrocyanide in 

solution. The oxidation of ferrocyanide takes place during both scan directions, so long 

as the disk potential is positive of ca. 0.1 V. As the similar shapes of curves a and b 

suggest, ferrocyanide oxidation occurs concurrently with oxide formation, although the 

formation of AuO is not required for the ferrocyanide reaction [35, 36]. If the residual 

response is subtracted from the response with ferrocyanide in solution (i.e., if curve a is 

subtracted from curve b), then the remainder would represent current due only to the 

reaction of ferrocyanide. Curves a and b of Figure 2 show that the ferrocyanide 

response would appear as a current plateau, and this is indicative of a reaction that is 

mass-tranport limited. Therefore, the oxidation of ferrocyanide to ferricyanide is not 

limited kinetically under these conditions, and so the reaction is an excellent choice for 

characterizing RRDE behavior. 

Curve c of Figure 2 shows the ring current (/V) plotted versus disk potential {EJ) 

with 1.00 mM ferrocyanide in solution and CPD applied to the ring. As in all other 

cyclic voltammograms, the ring response is shown ten times (lOx) its actual value for 

clarity. A potential of 0.5 V was applied to the ring, which was sufficient to oxidize 
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Figure 2. Voltammetric response for 1.00 mM ferrocyanide at Au RRDE in 0.1 M 
NaOH. Rotation rate: 225 rev min"'. Disk scan rate: 50 mV s"'. 
Curves: (a) disk, residual, (b) disk, 1.00 mM ferrocyanide, (c) ring (lOx), 
1.00 mM ferrocyanide; PED waveform: Edet = 0-5 V, toET = 350 ms, 
^del ~ 300 mS", EqxD ~ 0.8 V, toXD ~ Ered ~ "0.8 V, IreD ~ 
ms, (d) ring (lOx), 1.00 mM ferrocyanide; CPD at a potential of 0.5 V, 
(e) ring, residual (lOx), PED waveform identical to that in (c). 
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ferrocyanide at a mass-transport limited rate. There are two plateaus of ring response as 

the disk potential is scanned. When the disk potential is less than 0.1 V, no oxidation of 

ferrocyanide occurs at the disk. Since the ring is not shielded by the disk, and ring 

current is at maximum in this potential region. When the disk potential is positive of 0.1 

V, ferrocyanide is oxidized at the disk and makes less available to the ring, thus resulting 

in the smaller current plateau evident at > 0.2 V. 

Curve d of Figure 2 represents the response for ferrocyanide with PED applied to 

the ring electrode. The PED waveform detection potential was chosen to be 0.5 V 

to facilitate comparison to the CPD response shown in curve c. The ring response with 

PED is qualitatively similar to that using CPD. The most apparent difference is about 

5 Ilk of additional current generated with the PED waveform. As is evident from curve 

e, which shows the ring response for the same PED waveform with no analyte in 

solution, most of this excess current is attributable to a higher background resulting from 

the generation of surface oxide during the detection step of the PED waveform. Unlike 

CPD, the ring potential is not constant during the entire experiment, and so the AuO 

being generated continuously with each PED cycle results in anodic current that does not 

completely decay before the ring response is measured during E^^. If the residual 

current (curve e) is subtracted from the PED signal with ferrocyanide present (curve d), 

then there is almost no difference between the PED and CPD response for ferrocyanide. 

According to Equation 2, there should be a linear correlation between ring current 

and the square root of rotation speed for a reaction with fast kinetics. Figure 3 shows 

plots of /V versus for ferrocyanide using both CPD and PED. For both sets of data. 
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the response in the absence of analyte (residual response) has been subtracted. As 

predicted by the Levich equation, there is a linear relationship (R- > 0.999) for both 

CPD and PED at the ring electrode. The intercept of the line representing the PED 

response is slightly larger than that for CPD, which can be attributed to imperfect 

correction for the large background current. In the presence of ferrocyanide, there is a 

small shift in the current for oxide formation at > 0.2 V, so that a small offset is seen 

when the ring residual (background signal) is subtracted from the response with 

ferrocyanide in solution. The discrepancy should not detract from the fact that, as Figure 

3 shows, there is a linear relationship between / vs o)"- for both sets of data, and that 

PED is in good agreement with CPD. 

Further validation of PED at the ring of the RRDE was made by measuring the 

ratio (jS^'^) of the ring current to disk current under mass-transport limited conditions, and 

comparing the values to those from CPD and theory. The comparison for three electrode 

rotation speeds is shown in Table 1. The theoretical values (/3^'^cal) were calculated 

using Equation 3 and the respective radii of the ring and disk electrodes. The 

experimental values (/3^"ped. /S^'^cpd) were determined from the response of 1.00 mM 

Table 1: Comparison of calculated and experimental" values 

Rotation Speed (RPM) /S^'cal iS^'ped ^^'CPD 

400 0.526 0.545 + 0.018 0.523 ± 0.006 
900 0.526 0.537 ± 0.016 0.523 ± 0.006 

1600 0.526 0.534 ± 0.016 0.524 ± 0.005 

"Experimental values of i8^' determined using 1.00 mM ferrocyanide in 0.1 M NaOH. 
Experimental uncertainties measured using the standard deviation of four trials. 
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Figure 3. Current versus square root of rotation speed for 1.00 mM ferrocyanide at 
Au in 0.1 M NaOH. Curves: (a) ring response using CPD at a detection 
potential of 0.5 V; (b) ring response using PED. Waveform; Edet = 0.5 
V, toET = 350 ms, toEL = 300 ms; Eqxd = 0.8 V, toxo = 60 ms; Ered = 
-0.8 V, tRED = 90 ms. The data is shown with the residual current 
subtracted for both CPD and PED. 
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ferrocyanide at a potential of 0.5 V. As with the plots of / vs w'''-, the residual current 

was subtracted from the response with ferrocyanide in solution. The experimental values 

of 0^'^ from PED do not conform to the theoretical values as well as do those from CPD. 

The disparity can be attributed to imperfect correction for background current in the 

absence of ferrocyanide, which is more evident at the slower rotation speeds where the 

flux of analyte to the electrode surface is smallest, and the relative error introduced by 

background subtraction is largest. 

A final test of how well PED correlates with CPD and theory is shown in Table 

2, which compares collection efficiencies at the three rotation speeds. The theoretical 

collection efficiency was calculated using Equations 4-6. The experimental N values 

were determined using: 

i 
N = -^ 

'./ (7) 

which is applicable to a ring reaction that is identical to, but in the reverse direction of, 

the reaction at the disk. For the experimental values of N shown in Table 2, the disk 

current was measured at a disk potential of 0.5 V, and the ring current measured at a 

ring potential of -0.5 V. Thus, the disk reaction was the oxidation of ferrocyanide to 

ferricyanide, whereas the reaction at the ring was the reverse, with ferricyanide reduced 

back to ferrocyanide. The waveform used for the PED results was the same as that in 

Figure 2, with the exception of the detection potential, which was -0.5 V. The PED data 
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Table 2. Comparison of calculated and experimental" collection efficiencies. 

Rotation Speed (RPM) Ncal Nped Ncpd 

400 0.220 0.230 ± 0.016 0.232 ± 0.013 
900 0.220 0.227 ± 0.015 0.229 ± 0.010 

1600 0.220 0.229 ± 0.012 0.228 ± 0.008 

"Experimental collection efficiencies determined using 1.00 mM ferrocyanide in 0.1 M 
NaOH. Uncertainties measured using the standard deviation of four trials. 

shows good agreement with RRDE theory and with CPD data, providing further evidence 

that PED is comparable to CPD. 

The similar results obtained by PED and CPD for ferrocyanide, as well as the 

apparent adherence of PED results to RRDE theory, demostrate that PED can be applied 

successfully at the ring to monitor analytes which have mass-transport limited response. 

However, there is no intrinsic advantage for PED over CPD for compounds like 

ferrocyanide that are electroactive under constant potential conditions. The benefit of 

PED at the ring of an RRDE is realized for compounds that do not remain electroactive 

when CPD is used. In the next section, PED at the ring electrode is used to monitor the 

electrochemical behavior of analytes show little response with CPD. Specifically, PED at 

the ring electrode will be used to determine the adsorptive behavior of amines at the Au 

disk electrode. 

Monitoring amine behavior using PED at the ring of an RRDE. The 

electrochemical behavior of amine compounds was studied using PED at the ring and 

linear-sweep voltammetry at the disk of an RRDE. The results are shown in Figure 4. 
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Figure 4. Voltammetric response for 40 fiM ethylamine at Au in 0.1 M NaOH. 
Rotation rate: 900 rev min"'. Disk scan rate: 50 mV s '. Curves: (a) 
disk, residual; (b) disk, 40 ethylamine; (c) ring (lOx), 40 fxM 
ethylamine, PED waveform: Edet = 0-2 V, toET = 350 ms, tuEL = 300 
ms; Eoxd = 0.8 V, toxo = 60 ms; Ered = -0.8 V, tREo = 90 ms, (d) ring 
(lOx), 40 /xM ethylamine, CPD with a detection potential of 0.2 V. 
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Curve a again represents tlie residual response of the Au disk in 0.1 M NaOH. The disk 

response for 40 fiM ethylamine is shown as curve b. As the disk potential is scanned 

positive of 0.1 V, the oxidation of ethylamine occurs concurrently with the formation of 

AuO. Oxidation of both ethylamine and Au continues until the positive scan limit is 

reached, and terminates upon initiation of the negative potential scan. The reaction of 

ethylamine at the Au disk behaves as would be expected for a process that is 

predominantly under surface control, with the resulting anodic current being much less 

than what would be seen for a mass-transport limited reaction. However, at 

concentrations less than 100 ixM, the ethylamine signal does vary somewhat with both 

concentration and rotation speed, indicating that at low concentrations, the oxidation of 

ethylamine is under both mass-transport and surface control. 

The ring response for the PED of ethylamine is shown as curve c of Figure 4. In 

the absence of any disk reaction affecting ethylamine flux, the ring signal would appear 

to be constant at all disk potentials. However, the ring response for ethylamine is not 

constant, and instead exhibits both shielding and collection phenomena. There are four 

distinct regions of ring response for ethylamine as the disk potential is scanned. Region 

1 begins at = 0.1 V and continues to the positive scan limit. Of the four regions, this 

region is the simplest to explain based upon the apparent behavior of ethylamine at the 

disk. As ethylamine is oxidized at the disk, the flux of ethylamine to the ring is reduced, 

resulting in the decrease (shielding) of ring current. The ring data can provide further 

insight into the oxidation of ethylamine at the disk. At potentials between 0.3 V and 

0.5 V, disk current generated from the oxidation of ethylamine is fairly uniform, and so. 
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based upon disk response, it migiit be concluded that ethyalmine is adsorbing to the disk 

surface at a consistent rate in this potential region. If so, the ring current should also 

exhibit a relatively consistent shielding response. Instead, the ring's shielding response 

reaches a maximum at = 0.2 V and then decreases at more positive potentials. This 

suggests that at potentials greater than 0.2 V, much of the disk current for ethylamine is 

not from analyte that is being concurrently transported to the electrode surface, but 

instead is due to ethylamine previously adsorbed at less positive potentials. 

Upon initiation of the negative disk scan at 0.7 V, the oxidation of ethylamine at 

the disk ceases and a constant current for ethylamine is displayed by the ring. The 

currents remain stable until about 0.1 V. At this point, AuO is stripped from the disk, 

and a second shielding of ring current is evident in region 2. Unlike the shielding 

response in region 1, the shielding exhibited by the ring cannot be due to ethylamine 

oxidation at the disk, because there is no evidence for such a reaction from the disk 

response. Instead, the shielding peak is attributable to adsorption of ethylamine at the Au 

disk, and the adsorption occurs with negligible charge transfer. Since the adsorption 

takes place only as AuO is reduced at the disk, it appears that amines preferentially 

interact with a reduced Au surface that is relatively free of oxide. 

As the disk potential is scanned negative of -0.4 V, the ring exhibits an increase in 

the current in region 3 that can be attributed to the collection of ethylamine being 

desorbed from the disk. As in region 2, there is no evidence of any faradaic reaction at 

the disk, and so the desorption of ethylamine from the disk is occurring without charge 

transfer. Apparently, some of the ethylamine adsorbed at the disk in region 2 undergoes 
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desorption as the disk potential is scanned into region 3, indicating that surface coverage 

is potential dependent. 

A final shielding of ring current occurs in region 4 on the positive scan of the disk 

potential. The shielding occurs at almost the same potential as the collection of region 3 

took place, and, indeed, the two regions are almost mirror images of each other. It 

follows that this decrease in ring current may be attributed to re-adsorption of ethylamine 

on the positive scan at disk sites where ethylamine had been desorbed on the negative 

scan in region 3. 

The adsorptive behavior of ethylamine at a Au electrode appears to be rather 

complex. Ethylamine seems to preferentially adsorb to a reduced Au surface, as is 

evident by the ring shielding seen as disk surface oxide is being stripped at 0.1 V. At 

potentials negative of = -0.5 V, some of the ethylamine is desorbed, resulting in the 

collection peak of region 3. When the disk is again scanned positive of = -0.5 V, the 

ethylamine is re-adsorbed in region 4. Therefore the ethylamine adsorption appears to be 

potential-dependent, and maximized between -0.5 V and the onset of oxide formation at 

about 0.1 V. Since desorption and adsorption of ethylamine in regions 3 and 4 occur at 

virtually identical potentials, the interaction of ethylamine also is concluded to be, at least 

in part, reversible. 

The adsorption/desorption couple exhibited by ethylamine at E^ = -0.5 V was 

investigated further by repeating the ring-disk experiment for ethylamine with the disk's 

positive scan limit changed from 0.7 V to 0.0 V. Changing the positive scan limit to 0.0 

V ensured that no ethylamine would be oxidized during the entire disk scan, and any 
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observed ring phenomena would be due to processes occurring independently of AuO 

formation and dissolution. The disk potential was cycled several times between -1.0 V 

and 0.0 V, and, for each scan, the shape and size of the shielding and collection peaks at 

-0.5 V were consistent with the data shown in curve c in Figure 4. 

Several other n-alkylamines were studied under the similar conditions. The ring-

disk results for n-propylamine, n-butylamine, n-pentylamine and n-hexylamine were 

virtually identical to those for ethylamine, indicating a similar adsorption mechanism. 

There was almost no signal at either the ring or disk electrode for the aliphatic n-amines 

in acidic media, and so we conclude that the adsorption (and subsequent oxidation) of 

small aliphatic n-amines at Au requires the amine moiety to be in the deprotonated 

(RNHj) form. 

To determine whether CPD at the ring is capable of providing the same analytical 

information as PED, attempts were made to monitor ethylamine at the RRDE with CPD 

applied to the ring, which is shown as curve d in Figure 4. A detection potential of 0.2 

V was used to facilitate comparison to the PED data shown in curve c. However, there 

is no CPD response for the ethylamine in solution, supporting the premise that aliphatic 

amines are not electroactive at Au under these conditions. Several other choices for the 

CPD potentials were tried with similar results. 

Another compound investigated using PED at the ring of an RRDE was 

ethanolamine (2-amino-l-ethanol). The results are shown in Figure 5. The disk response 

for ethanolamine differs significantly from the response for ethylamine, especially at 

potentials less than 0.1 V. Oxidation of ethanolamine begins at about -0.5 V, and 
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Figure 5. Voltammetric response for 20 /nM ethanolamine at Au in 0.1 M NaOH. 
Rotation rate: 900 rev min"'. Disk scan rate: 50 mV s '. Curves: (a) 
disk, residual; (b) disk, 20 /xM ethanolamine; (c) ring (lOx), 20 /tM 
ethanolamine, PED waveform: = 0.2 V, tDET= 350 ms, tpEL = 300 
nis; EQXD ~ 0-8 V, toxo ~ ^RED ~ *0.8 V, IRED ~ 'tis. 
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continues for the remainder of the positive scan. Upon initiation of the negative scan, the 

anodic current for ethanolamine ceases until onset of AuO reduction. Once surface oxide 

is reduced, the oxidation of ethanolamine again commences and continues until the 

potential is scanned negative of -0.5 V. Jackson et al. concluded that the signal for 

ethanolamine at an Au electrode could be separated into two distinct regions [39]. At 

potentials less than 0.3 V, the majority of the anodic current is derived from conversion 

of the alcohol group to the carboxylic acid, so that the primary product of ethanolamine 

oxidation at Au is glycine. It also was shown that in comparison to simple alcohols, 

amino alcohols generate a much larger anodic current at Au. This was attributed to the 

beneficial effect of the amine group adsorbing to the Au surface, thus increasing surface 

residence times and allowing complete conversion of the amino alcohol to the amino acid. 

At low concentrations (less than 10 mM), the anodic current for ethanolamine at 

potentials less than 0.3 V was found to be mass-transport limited. 

At potentials greater than 0.3 V, anodic current for ethanolamine is believed to 

be generated by the oxidation of the amine group, and the reaction in this region is no 

longer mass-transport limited. Instead, the signal for ethanolamine, like ethylamine, 

appears to be surface-controlled and dependent upon the formation of surface oxide. The 

ring response with PED clearly delineates where the oxidation of ethanolamine at the disk 

is mass-transport limited. As the disk is scanned positive, the shielding of ring current 

begins at about -0.6 V. This shielding increases until it reaches a plateau at a disk 

potential of about -0.3 V. The plateau of ring shielding, much as the plateau of the disk 

current, indicates that the oxidation of ethanolamine at the disk is limited only by the rate 
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at which analyte is transported to the electrode surface. As the disk is scanned positive 

of 0.3 V, the shielding decreases (ring current increases), and so the reaction at the disk 

is no longer mass-transport limited. On the negative scan, the ring response shows no 

shielding until the disk is scanned negative of 0.1 V, whereupon AuO is reduced and the 

oxidation of ethanolamine resumes. A shielding plateau is again seen at the ring, 

indicating that the oxidation of ethanolamine has resumed at a mass-transport limited rate. 

On the negative scan near -0.5 V, oxidation of ethanolamine at the disk ceases and 

the ring current increases accordingly. However, before returning to a steady-state value, 

the ring shows a collection peak at E,, = -0.5 V. The ethanolamine collection peak 

occurs at virtually the same potential as the collection peak observed for ethylamine. On 

the positive scan, there is also a shielding of ring current at about the same potential, just 

prior to the onset of ethanolamine oxidation at the disk. The similarity of ring results for 

both ethanolamine and ethylamine in this potential region suggests that alkanolamines also 

adsorb to the Au surface through the amine moiety. The alcohol group, while 

responsible for the majority of the anodic signal, does not appear to influence the 

adsorption process. Ethanol was studied under similar conditions to determine if it 

undergoes adsorption in a manner similar to ethanolamine. No evidence was found for 

ethanol adsorption. It is perhaps not coincidental that the anodic current for ethanol is 

much smaller than that obtained for ethanolamine. The RRDE results tend to support the 

conclusions of Jackson et al., who concluded that the response of alkanolamines in 

alkaline conditions benefits form the adsorption of the amine group [39]. It is speculated 

that, as with ethanol and ethanolamine, adsorption may be the primary factor in 
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determining the magnitude of the signal obtained for many aliphatic compounds at noble 

metal electrodes. 

The RRDE results for 500 glycine are shown in Figure 6. The disk response 

is fairly similar to what was seen in Figure 3 for ethylamine, but at a much larger glycine 

concentration. Like ethylamine, glycine is oxidized at the disk concurrently with the 

formation of catalytic AuO. The ring response for glycine at disk potentials positive of 

0.0 V also appears very similar to that of ethylamine, with shielding exhibited on the 

positive scan at > Q.\ V, and on the negative scan at E^ < 0.1 V. However, the ring 

response for glycine is quite different than ethylamine at E^ = -0.5 V. In this region, the 

ring data for glycine show no evidence of the adsorption/desorption couple seen for both 

ethylamine and ethanolamine, indicating that the adsorption of glycine differs from the 

other amine compounds studied. As stated earlier, both ethylamine and ethanolamine are 

believed to adsorb primarily through the amine group. Because the RRDE results for 

glycine differ from the other amine compounds studied, we conclude that glycine's 

carboxylate group, unlike the alcohol group of alkanolamines, participates in the 

adsorption of glycine in alkaline solutions. This conclusion is supported by the previous 

work of other authors, who also found evidence for carboxylate's involvement in the 

adsorption of glycine on metal surfaces [5, 6, 19, 23]. 

HPLC-PED of aliphatic amines. The primary application of pulsed 

electrochemical detection is for the determination of aliphatic compounds separated by 

HPLC [1 - 4]. Typically, optimization of the FED waveform has concentrated on the 
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Figure 6. Voltammetric response for 500 fiM glycine at Au in 0.1 M NaOH. 
Rotation rate: 900 rev min"'. Disk scan rate: 50 mV s"'. Curves: 
(a) disk, residual; (b) disk, 500 /xM glycine; (c) ring (lOx), 500 /xM 
glycine, PED waveform: Euex = 0-2 V, tp^ = 350 ms, tpEL = 300 ms; 
Eqxd ~ ^oxD ~ 60 ms; Ered ~ -0.8 V, tuEo ~ 
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detection potential with the best Epi^ determined empirically by ascertaining where 

signal for the analyte(s) is maximized relative to the background noise. For the detection 

of amines on Au in alkaline conditions, the optimum is about 0.2 V. Little attention 

usually is given to the oxidative cleaning (Eoxd) or reductive regeneration (E^) potential 

steps, and their possible effect on the PED response. As their names suggests, these 

potentials typically have been chosen simply to assure oxide formation at the working 

electrode during E„xn and its subsequent dissolution during Eu^p, thus providing a clean 

electrode surface when the potential is stepped to E^^. However, if the value of is 

chosen to promote amine adsorption, then it can also serve to concentrate any amine in 

the chromatographic effluent. Thus, when the potential then is stepped to Ej^^, a larger 

concentration of the amine will be present at the working electrode's surface, resulting in 

a larger analytical signal. Since the adsorption of aliphatic amines at Au is potential-

dependent and maximized between -0.4 V and 0.0 V, choosing E^p = -0.4 V should 

promote amine adsorption while still reducing AuO. 

To determine if the choice of had any effect on the PED response for 

amines, a 50 fiM ethylamine standard was prepared and its PED signal measured as a 

function of Ep^r,- in an HPLC system. Separation was provided by a multimodal cation-

exchange/reverse-phase column, and detection was done at an Au working electrode in a 

commercially-available flow-through cell. The results for a series of ethylamine 

injections are shown in Figure 7, with the first three injections made at E^p = -0.4 V, 

and the last three injections made at E^p = -0.8 V. All other conditions were identical 
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Figure 7, HPLC-PED of ethylamine. Analyte: 50 /iM ethylamine. Column: 
Dionex PCX-500 (4 x 50 mm). Eluent: 20 mM HOAc/120 mM NaOAc 
at 1 mL min"'. Post-column addition of 0.3 M NaOH at 0.6 mL min"'. 
PED waveform: Edet = 0-2 V, tDEL= 250 ms, tn^ = 50 ms; Eqxd = 
0.8 V, toxD = 120 ms; Ered = -0.4 V, (first 3 injections) / -0.8 V (last 
3 injections), tREo = 380 ms. 
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for the six injections. With = -0.4 V, a larger response is obtained, which can be 

attributed to the beneficial effect of using the to promote adsorption. Therefore, 

these results support the conclusions from the RRDE data that indicated the adsorption of 

amines is potential-dependent. However, under these conditions, there is only about a 

50% increase in the PED signal, which, though significant, is certainly not a large 

improvement in PED response. 

Under more typical separation conditions, the effect of promoting adsorption 

during is more evident. The separation of a series of amines is shown in Figure 8 

using a mobile phase containing 10% acetonitrile, which is necessary to elute many of the 

amines from the column. Again, the experimental conditions for the two sets of data 

were identical except in the choice of which was -0.4 V for chromatogram A, and 

-0.8 V for chromatogram B. For the first four peaks representing ethylamine through 

pentylamine, there is an average five-fold improvement in the HPLC-PED signal when 

the more positive is used. The results are most dramatic for hexylamine (peak e), 

which is readily apparent in Figure 8A, but not detected in Figure 8B. Acetonitrile has 

been shown to adsorb to Au [40], and it is concluded that its presence in the eluent can 

affect the ability of amines to also undergo adsorption to the Au working electrode. 

Using an Efi^p = -0.4 allows amines to more effectively compete with acetontrile for 

adsorption sites on the Au surface, and thus results in a larger PED response. A further 

benefit of having E^ = -0.4 V is its effect on noise, which decreases, on average, by a 

factor of two relative to when E^[, = -0.8 V. We speculate that with the more positive 

reduction potential, there is less charging current when the potential is stepped to E^,^ 
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Figure 8. HPLC-PED of aliphatic amines. Column: Dionex PCX-500 (4 x 50 mm). 
Eluent: 30 mM HOAc/80 mM NaOAc/10% (v/v) acetonitrile at 1 
mL/min"'. Post-column addition of 0.3 M NaOH at 0.6 mL min*'. 
Chromatograms: (A) PED waveform: Edet = 0.2 V, toET = 300 ms, 
^DEL~ 250 ms, tiNT= 50 ms; Eqxd ~ 0.8 V, toxo ~ 120 ms; Ei^ed ~ -0.4 
"V, Ired = 180 ms. (B) PED waveform: E^et = 0-2 V, tdel= 250 ms, 
tiNT ~ Tis; Eqxd ~0.8 V, toxo ~ 120 ms; Ered ~ -0.8 V, t^ED — 180 
ms. Peaks (50 /iM): (a) ethylamine, (b) n-propylamine, (c) n-butylamine, 
(d) n-pentylamine, (e) n-hexylamine. 
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and signal is sampled. When the average gain in signal is factored in with the decrease 

in noise, there is an order-of-magnitude improvement in the detection limits for the 

HPLC-PED of aliphatic amines. 
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CONCLUSIONS 

A new application of pulsed detection has been demonstrated in which PED is 

applied to the ring of an RRDE. The technique was characterized using ferrocyanide as a 

model compound, and the experimental results are in good agreement with both 

calculated and experimental results for constant potential detection. PED at the ring then 

was used to monitor the electrochemical behavior of aliphatic amine compounds at the 

disk. Simple amines and amino alcohols were shown to undergo potential-dependent 

adsorption at the Au disk in alkaline solutions. The adsorption appears to be reversible, 

and maximized at potential between -0.5 V and -0.1 V. The similar results for amines 

and alkanolamines suggests that, for alkanolamines, the alcohol group does not affect the 

adsorption process. The RRDE results for glycine at Au differ from the other amines 

studied, suggesting that glycine adsorption is not controlled solely by the amine group, 

but is influenced by the carboxylate moiety as well. 

Understanding the potential dependence of amine adsorption allows optimization of 

the PED waveform parameters used with an HPLC system. By choosing the reduction 

potential to promote adsorption, ethylamine effectively is concentrated at the electrode 

surface, so that when the detection step is made, more ethylamine is oxidized and a 

larger PED signal is obtained. The benefits of promoting adsorption during are 

most dramatic in the presence of acetonitrile, with an average five-fold improvement in 

the signal obtained from the optimized PED waveform versus a non-optimized waveform. 

A concurrent reduction in noise for the optimized PED waveform resulted in an order-of-
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magnitude improvement in the detection limits for the HPLC-PED of small aliphatic 

amines. 

We anticipate that PED at the ring of an RRDE will have further application for 

monitoring adsorption at electrode surfaces. Current work in our laboratories continues 

to investigate the adsorption of both amines and sulfur compounds. Since the RRDE is 

already established as a tool for determining unstable electrode intermediates and reaction 

kinetics, we also expect that PED at the ring will have benefits in these areas as well. 
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ABSTRACT 

Linear scan (cyclic) voltammetry at the disk and pulsed electrochemical detection 

(PED) at the ring of a rotating ring-disk electrode are used to characterize the 

electrochemical behavior of ethylamine at Au. In 0.10 M NaOH, the oxidation of 

ethylamine at Au is found to be under both mass transport and surface control (mixed 

control), and limited by rate at which catalytic surface oxide is formed. The ethylamine 

signal at the disk can be divided into two parts: (1) current from ethylamine mass-

tranported to the electrode concurrently with the oxidation process, and (2) current from 

ethylamine pre-adsorbed to the electrode surface at potentials negative of where oxidation 

occurs. At a concentration of 40 (jlM, 65% of the total disk signal is derived from 

ethylamine mass-transported to the electrode surface during the oxidation process. The 

other 35 % of the disk signal is due to pre-adsorbed ethylamine. The pre-adsorbed 

ethylamine corresponds to a surface coverage of less than one monolayer. Approximately 

three-fourths of the total surface coverage is from ethylamine reversibly co-adsorbed with 

hydroxide, with the remaining one-fourth of the surface coverage is from ethylamine 

chemisorbed directly to the reduced Au surface. 
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INTRODUCTION 

Because of their biological and industrial importance, the electrochemistry of 

amine compounds has been studied at a variety of metal electrodes, including Cu [1 - 3], 

Pt [4 - 6], Au [7 - 9], Ag [10 - 13], and the oxides of Co, Cu, and Ni [13 - 16]. A 

primary goal for many of these studies has been to determine the mechanism by which 

amines are oxidized at the electrode surface, and the resulting product(s) of the reaction. 

For the oxidation of aliphatic amines in aqueous media, the products were found to 

depend upon the electrode material and experimental conditions. Barnes and Mann 

studied the oxidation of primary amines at Pt, and found that the product was an aldehyde 

[6]. Based on their results, they proposed a mechanism in which the cleavage of the C-N 

bond to form the aldehyde occurred via the following (abbreviated) series of steps. 

RCH2NH2 RCHzNHj^ + e- (1) 

RCH2NH2^ RCHNH, + (2) 

RCHNH2 ^ RCH=NH2^ + e" (3) 

RCH=NH2-' + H2O RCHO + NH3 + (4a) 

However, the predominant oxidation product for primary amines at most 

electrodes is the nitrile [17]. Hampson et al. [12] proposed a mechanism for nitrile 

formation at Ag in which the first steps were similar to steps 1 - 3 of the above 

mechanism, but with an imine formed at Step 4 instead of an aldehyde. The imine 

eventually was converted to the nitrile through the following (abbreviated) mechanism. 
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RCH=NH2+ RCH=NH + (4b) 

RCH=NH -> RCH=NH+ + e" (5) 

RCH=NH+ RCH=N: + H+ (6) 

RCH=N: RCH=N;+ + e" (7) 

RCH=N:+ RCH^N: + H+ (8) 

In our laboratories, there is strong interest in the detection of amine compounds at 

noble metal electrodes, and in a previous paper the voltammetric basis for alkanolamine 

signal at Au was investigated [18]. The response for ethanolamine at Au was found to be 

much larger than that of ethanol, despite signal for both compounds resulting from the 

conversion of the alcohol moiety to the carboxylic acid. The larger ethanolamine 

response was attributed to the beneficial effect of amine adsorption. Adsorption was 

believed to increase the surface residence time of the individual ethanolamine molecules, 

and ultimately result in a reaction that was mass-tranport limited. A more general study 

of amine adsorption at Au followed, using results from a rotating ring-disk electrode 

(RRDE) [19]. Because the response for amines quickly decays to negligible values at 

noble metal electrodes when using constant potential (DC) detection, pulsed 

electrochemical detection (FED) was applied to the ring electrode, thus maintaining the 

conditions responsible for providing signal. The adsorption of aliphatic amines, 

alkanolamines and an amino acid, glycine, was described as a function of applied 

potential. The similarity of amine and alkanolamine behavior indicated that both classes 
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of compounds adsorb through the amine functional group, supporting previous speculation 

that the alkanolamine signal at Au benefits from amine adsorption. 

In this paper, the electrochemistry of one amine compound, ethylamine, is further 

investigated using linear scan voltammetry at the disk and PED at the ring of a Au 

RRDE. By using data from both ring and disk electrodes, a more thorough 

characterization of ethylamine's electrochemical behavior at Au is possible, especially 

with respect to determining the role of adsorption in the oxidation process. Specifically, 

the goals of this paper are: (1) to qualitatively describe the behavior of ethylamine at the 

disk, and correlate the response to the formation of catalytic hydroxide/oxide on the Au 

surface; (2) to determine the fraction of signal at the Au disk that is attributable to 

ethylamine pre-adsorbed at potentials negative of where its oxidation takes place, as 

opposed to the fraction signal due to ethylamine mass-transported to the disk surface 

concurrently with the oxidation process; (3) to estimate the surface coverage of 

ethylamine on Au, identifying two possible adsorption states and their dependence on the 

condition of the electrode surface; and (4) determine the number of electrons transferred 

in the oxidation of ethylamine. Ultimately, we hope to provide a complete description of 

the processes that result in the oxidation of ethylamine at Au. 
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EXPERIMENTAL 

Reagents. All chemicals were used as received. Ethylamine (Kodak, Aldrich) 

was a practical grade of 70% (w/w) in water. Sodium hydroxide used as the supporting 

electrolyte was prepared either from reagent grade pellets (Fisher Scientific) or a 

commercially available 50% w/w NaOH solution (Fisher Scientific). Deionized water 

was purified with a Milli-Q system (Millipore) after passing through two D-45 deionizing 

tanks (Culligan). All solutions used in the voltammetric experiments were deaerated with 

nitrogen gas before and during the experiments. 

Voltammetric apparatus. All RRDE data were obtained using a AFRDE4 bi-

potentiostat, AFMSR rotator, and AFMT28AUAU gold ring-disk electrode (Pine 

Instrument). The outer diameter of the disk was 0.457 cm. The ring had an inner 

diameter of 0.493 cm and an outer diameter was 0.538 cm. A saturated calomel 

electrode (SCE; Fisher Scientific) was used as the reference electrode, and a coiled Pt 

wire was used as the counter electrode. The electrochemical cell was made of pyrex, 

with porous glass frits separating the individual compartments for the working, reference 

and counter electrodes. The potentiostat was interfaced to a personal computer (Jameco) 

via a DT2801-A data acquisition board (Data Translation) and ASYST version 4.0 

software (Keithley/Asyst). 

Voltammetric procedure. The procedure has been described previously [19], and 

only a summary will be presented here. For most experiments, the disk potential was 

scanned as a PED waveform was applied to the ring electrode of a RRDE. Control of 
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the disk potential was maintained exclusively by the bi-potentiostat. The PED waveform 

applied to the ring electrode was provided by the computer interfaced to the bi-

potentiostat. All PED parameters (see Figure 1) could be selected independently through 

programs written in ASYST software. During the detection time ring current, disk 

current and disk potential were sampled through the computer interface. The total time 

necessary for one complete PAD waveform determined how often signal was measured. 

For a typical PAD waveform with a total time of 500 ms, the sampling frequency was 2 

Hz. 
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RESULTS AND DISCUSSION 

Ethylamine behavior at a Au RDE. Based upon observed electrochemical 

behavior, there are two general classifications for reactions that occur at the surface of 

electrodes: those under surface control, and those under mass-transport control. Surface-

controlled reactions are limited by slow heterogeneous kinetics for one or more of the 

reaction steps occurring at the electrode surface, with the rate-limiting step perhaps 

related to adsorption, electron transfer or oxygen transfer. Conversely, a reaction with 

fast heterogeneous kinetics is limited only by the rate that species are convectively and 

diffusionally transported from the bulk solution to the electrode surface, and such a 

reaction is said to be under mass-transport control. Linear scan (cyclic) voltammetry at a 

rotating disk electrode (RDE) is an excellent means for studying reactions at metal 

surfaces, because a controlled hydrodyanic flow is maintained through simple rotation of 

the electrode body. Thus, a quantitative description of the mass-transport process is 

possible. The Levich equation describes the current (/, Amps) for a mass-transport 

limited reaction at an RDE [20]: 

i = 0.62nFAD^'^w"2f-"'C'' (9) 

where n is the number of electrons transferred in the reaction (eq/mol), F is Faraday's 

constant (C/eq), A is the area of the electrode (cm^), w is the electrode's rotational 

velocity (rad/s), v is the kinematic viscosity of solution (cm^/s), and C' is the 

concentration of the analyte in solution (mol/cm^). The Levich equation predicts that the 

response for a mass-transport limited reaction should be proportional to both C and w"-. 
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but independent of the potential scan rate (<f>) when using linear scan voltammetry. 

Conversely, for a reaction under surface control, the signal is not limited by mass-

transport, and so is independent of the parameters defining analyte flux, Cf' and 

Instead, the current shows linear dependence upon the voltammetric scan rate. This is 

because charge, which is the integral of current (/) multiplied by time (t), remains 

constant with increasing scan rate for a surface-controlled reaction. Therefore, as the 

scan rate is increased, the charge must be generated over a shorter amount of time, and 

so the current for a surface-controlled reactions increases accordingly. 

Reactions also can be under both mass-transport and surface control. Such a 

reaction is said to be under "mixed control," and the current obtained for such a reaction 

at a RDE will vary with 0", oi"- and 0, depending upon experimental conditions. 

Figure 2 shows the linear scan voltammetric (/-£) response of a Au RDE in the 

absence of any electroactive species. On the positive scan between -1.0 and -0.5 V, the 

relatively small current that is generated is attributable to double-layer charging. As 

potential is scanned positive of -0.5 V, an increase in the anodic current is observed. 

This increase has been attributed adsorption of hydroxide [OH'] in alkaline solutions [21 -

26] with possibly co-adsorption of water, especially in neutral and acidic solutions [27 -

29]. The exact nature of the adsorbed hydroxide has not been conclusively determined. 

Some authors have concluded that the adsorption is accompanied by partial or complete 

charge transfer resulting in the formation of the hydroxide radical, while other authors 

suggested that the hydroxide anion is adsorbed, as other anions, through electrostatic 

attraction to the Au surface when potential is positive of the point-of-zero-charge (PZC). 
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Figure 2. Residual voltammetric response at the Au RDE in 0.10 M NaOH. 
Rotational velocity: 900 RPM. Scan rate: 100 mV s '. 
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Whatever form hydroxide assumes upon adsorption, its importance for catalyzing the 

oxidization of many compounds at Au has been documented in previously studies [30 -

34]. 

As the potential is scanned positive of 0.1 V, there is a small pre-wave that has 

been associated with the formation of low-stoichiometry surface oxides, followed by a 

larger anodic wave beginning at 0.2 V representing the formation surface oxide (AuO). 

Oxide formation continues to the positive scan limit of 0.7 V, where an increase in 

anodic current results from oxygen evolution occurring through solvent break-down. 

Upon initiation of the negative scan, the signal for oxide formation and oxygen evolution 

diminishes, and the current at the Au disk approaches zero. As the disk is scanned 

negative of 0.2 V, a large cathodic peak results from the reduction of the surface oxide 

that had been formed on the positive scan. Once oxide reduction is completed, the 

negative scan is relatively featureless, and showing only current from hydroxide 

adsorption and double-layer charging. Because all of the processes contributing to the 

residual response are surface-controlled, the residual current is a linear function of scan 

rate. 

The response for several concentration of ethylamine at Au in 0.10 M NaOH is 

shown in Figure 3. As the disk potential is scanned positive of 0.1 V, current is 

generated from both the formation of AuO and the oxidation of ethylamine. Current for 

ethylamine is generated throughout the entire oxide formation region, and, indeed, AuO 

apparently catalyzes the oxidation of ethylamine. Upon initiation of the negative scan at 

0.7 V, the oxidation of ethylamine, like the formation of surface oxide, ceases. 
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Figure 3. Voltammetric response for ethylamine at the Au RDE as a function of 
concentration. Rotational velocity: 900 RPM. Scan rate: 100 mV s"' 
Curves: (a) 0 [xM, (b) 20 /nM, (c) 40 /nM, (d) 60 /iM, and (e) 80 /xM 
ethylamine. 
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At low concentrations, the current for ethylamine appears to be almost a linear 

function of C", as predicted by the Levich equation. However, this linear relationship is 

not observed at concentrations greater than 100 fiM under the conditions described in 

Figure 3. The oxide reduction peak obtained on the negative scan also is sensitive to 

ethylamine concentration. As the ethylamine concentration increases, a part of the 

cathodic peak is shifted to more negative potentials. This shift in the reduction peak 

might be indicative of ethylamine adsorbed to the electrode surface. By adsorbing to the 

Au surface, the ethylamine may stabilize the AuO formed during the positive scan, and 

thus make oxide reduction thermodynamically less favorable. Though this is not 

definitive evidence for ethylamine adsorption, it is perhaps an indication that adsorption 

does occur. 

The relationship between ethylamine signal and electrode rotation speed is shown 

in Figure 4. At an ethylamine concentration of 100 fiM, the response is a linear function 

of 0)'^- at low rotation speeds, but not at high rotation speeds. The results indicate that 

the oxidation of ethylamine adheres to the Levich equation at small values of Cf' and 

indicating that the reaction is mass-transport limited only at relatively low levels of 

ethylamine flux. 

Since the oxidation of ethylamine did not appear to be entirely under mass-

transport control, the relationship between signal and scan rate was used to investigate the 

extent of surface control. The dependence of ethylamine signal on scan rate are shown in 

Figure 5. A linear relationship is exhibited between current and scan rate, confirming 

that the oxidation of ethylamine is largely surface-controlled under the given experimental 
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Figure 4. Voltammetric response for 40 /^M ethylamine (EAM) at the Au RDE as a 
function of rotational velocity. Concentration; ICQ /xM. Scan rate: 100 
mV s-'. Curves: (a) residual; (b) EAM, 100 RPM; (c) EAM, 400 RPM; 
(d) EAM, 900 /xM; (e) EAM, 1600 RPM. 
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Figure 5. Voltammetric response for ethylamine at the Au RDE as a function of scan 
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conditions. However, at higher scan rates (</> > 100 mV s"'), the linear relationship is 

not maintained. Instead, anodic current for the reaction of ethylamine becomes more 

dependent upon the rate of flux, and almost independent of scan rate. 

The voltammetric results for ethylamine at a RDE indicate that the oxidation of 

ethylamine at Au in alkaline solutions is under mixed-control. At low ethylamine flux or 

high scan rates, the reaction is primarily under mass-transport control, because catalytic 

oxide is generated at a rate sufficient to oxidize all ethylamine that is transported to the 

surface of the electrode. At higher flux or lower scan rates, the reaction is under 

surface-control, and limited by the rate of AuO formation. In the next section, the 

potential dependence of ethylamine adsorption is studied, using PED at the ring electrode. 

Ethylamine adsorption using PED at the ring of a RRDE. For a heterogeneous 

reaction that is partially under surface-control, there is a strong possibility that adsorption 

of the analyte to the electrode surface is a part of the overall reaction mechanism. If the 

adsorption is accompanied by charge transfer, then its diagnosis is possible using cyclic 

voltammetry the disk. However, when charge transfer is negligible or absent, it is 

difficult to determine adsorption based solely upon the results obtained with a disk 

electrode. Instead, other experimental techniques are better suited to monitor adsorption. 

In a recent paper, the ring electrode of a Au-Au rotating ring disk electrode (RRDE) was 

used to monitor the adsorption of amine compounds at the disk electrode [19]. This was 

possible because the ring of a RRDE is essentially downstream from the disk electrode. 

This makes the ring sensitive to disk processes that affect the local concentration of 

ethylamine in solution. Pulsed electrochemical detection (PED) at the ring of the RRDE 
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was used to maintain ring activity for amine compounds, which are electrochemically 

inactive at noble metal electrodes under constant potential (DC) detection conditions. 

Using PED at the ring, the adsorption of aliphatic amines, amino alcohols, and the amino 

acid, glycine was determined as a function of applied disk potential. Here, a more 

detailed analysis of the RRDE results are presented for ethylamine. 

Figure 6 shows the response for 40 fiM ethylamine using cyclic voltammetry at 

the disk and PED at the ring of a RRDE. The disk current (ij) and ring current (Q are 

both plotted versus the disk potential, which was scanned at 50 mV s"'. The ring 

response was obtained using PED and a detection potential of 0.20 V, which 

provides the largest signal-to-background ratio for ethylamine. Region 1 of the ring 

response is the most readily explained based upon the apparent disk response. Because 

ethylamine is being consumed by the disk in this potential region, the flux of ethylamine 

to the ring is reduced. The ring current decreases accordingly, and results in the 

shielding response evident at 0.1 V < < 0.7 V. 

The ring phenomena observed in region 2 is not at a potential where amine 

oxidation is believed to occur at Au, and so is not readily explained by the apparent disk 

response. Instead, region 2 corresponds to potentials where oxide reduction occurs at the 

disk electrode, and the shielding of ring current is attributable to the adsorption of 

ethylamine on the reduced Au surface. The magnitude of disk cathodic peak also slightly 

decreases in the presence of ethylamine. This is perhaps because the presence of 

ethylamine at the Au surface suppresses the formation of oxide on the positive scan. 

However, it also may be the result of ethyalmine adsorbing to the reduced Au disk 
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Figure 6. Voltammetric response for 40 /nM ethylamine at Au in 0.1 M NaOH, with 
PED at the ring electrode. Rotational velocity: 900 rev min"'. Disk scan 
rate: 50 mV s"'. Curves; (a) disk, residual; (b) disk, 40 /xM ethylamine; 
(c) ring (lOx), 40 /iM ethylamine; PED waveform: Edet = 0-2 V (toET = 
300 ms, toEi. = 250 ms, ti^T = 50 ms); Eqxd = 0-8 V (toxo = 60 ms); 
Ered ~ -0.8 V (t^ED ~ 90 ms). 
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with charge transfer. 

At potentials corresponding to regions 3 and 4, the disk response is relatively 

featureless, both in the presence and absence of ethylamine in the solution. However, a 

change in the surface morphology is believed to occur at = -0.5 V, which corresponds 

to the PZC for Au at pH 13. The change in the residual current observed at the disk at 

-0.5 V has been attributed to be the result of hydroxide adsorption in alkaline media. It 

is apparent that the adsorption of hydroxide promotes some form of interaction between 

ethylamine and the Au surface, and this results in the ring phenomena observed in 

regions 3 and 4. We speculate that ethylamine co-adsorbs with hydroxide ion to Au, and 

the increase in ring current exhibited in region 3 during the negative disk scan is the 

result of ethylamine desorbed with hydroxide as the disk potential is scanned negative of 

the PZC. On the positive disk scan, the ethylamine is re-adsorbed with hydroxide as the 

potential is made positive of the PZC, resulting in the shielding of ring current observed 

in region 4. Because the collection and shielding phenomena of regions 3 and 4 occur at 

the same potential, the co-adsorption of hydroxide and ethylamine is believed to be 

reversible. 

The relative size of the ring shielding peaks in regions 2 and 4 provide for the 

possibility of more than one type of ethylamine adsorption occurring on the Au disk. 

The shielding of ring current in region 2, representing the maximum ethylamine 

adsorption, is larger than the shielding in region 4, representing reversible amine 

adsorption. Comparison of these two ring phenomena allows for a semi-quantitative 

description of the adsorption states. To accurately quantify the data, the ring response 
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was normalized to the response in the absence of any disk. This was done by acquiring 

the ring response with the disk at open-circuit, and then subtracted this current from ring 

response shown in Figure 6. The results are shown in Figure 7. Region 4, the ring 

shielding resulting from the reversible adsorption of ethylamine with hydroxide anion, is 

somewhat smaller than the shielding observed in region 2, representing total ethylamine 

adsorption. In quantitative terms, reversible adsorption accounts for only three-fourths of 

the total adsorption. The remaining 25% of the total adsorption is due to a second 

adsorption state, again perhaps the result of ethylamine chemisorbed directly to the Au 

surface. 

The relative size of the ring shielding peaks in regions 1 and 2 can be used to 

divide the disk signal for ethylamine into two parts: (1) current from ethylamine mass-

tranported to the electrode concurrently with the oxidation process on the positive disk 

scan (ETHmt), and (2) current from ethylamine pre-adsorbed to the electrode at potentials 

negative of where oxidation occurs (ETHads). but also oxidized when the disk potential is 

made positive of 0.10 V. Ring shielding in region 1 represents the contribution from 

ETHmt, and the ring shielding of region 2 again represents the contribution from 

E T H a d s -  T h e  r e l a t i v e  s i z e  o f  t h e  t w o  r e g i o n s  s h o w s  t h a t  a t  a  c o n c e n t r a t i o n  o f  4 0  f i M ,  

35% of the total signal derived from the oxidation of ethylamine is from pre-adsorbed 

species, while 65 % of the signal is the result of analyte mass-transported to the Au disk 

during the oxidation process. At lower concentrations, pre-adsorbed ethylamine is 

responsible for an increasing fraction of the total signal, whereas at higher 

concentrations, the percentage of disk response from ETH^os decreases. The size of the 
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Figure 7. Normalized response for 40 /xM ethylamine at the Au ring electrode in 0.1 
M NaOH, versus disk potential. Reponse normalized to the current 
obtained for 40 /xM ethylamine at the ring with the disk at open-circuit. 
Rotational velocity: 900 RPM. PED waveform: Euet = 0-2 V (toET = 
300 ms, t[)gL ~ 250 ms, tfjvjj — 50 ms)i Eqxd ~ 0.8 V (tgxo ~ rns)j 
Ered ~ -0.8 V (Ired = 90 ms). 
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shielding peak in region 2, while somewhat affected by the ethylamine concentration, 

reaches a maximum at concentrations less than 100 ^M. This suggests that ethylamine 

adsorption is limited by the availability of suitable surface sites on the Au disk. 

The RRDE data in Figures 6 and 7 indicates that during the positive scan between 

0.1 and 0.7 V, maximum shielding of the ring current occurs at about the same potential, 

0.2 V, where the maximum disk response for ethylamine is observed. However at 

potentials between 0.4 and 0.7 V, the shielding of the ring current diminishes, despite 

significant current still being generated from the oxidation of ethylamine at the disk. 

Therefore, the contribution from ETH^t to the overall disk signal varies with the applied 

potential. Figure 8 shows the total disk current (curve a) for ethylamine (residual 

response subtracted), and the disk current due to ETHmt (curve b), plotted versus applied 

potential. The difference between the two curves represents the portion of disk current 

from ETHaus- Ethylamine that is mass-transported to the disk surface at 0.1 V 

< Ej < 0.7 V accounts for the majority of the disk current, especially at potentials 

between 0.25 - 0.30 V. However, at potentials greater than 0.40 V, virtually all of the 

ethylamine signal is from species adsorbed at less positive potentials. 

The potential-dependent behavior of the disk response is perhaps better illustrated 

by Figure 9, which shows the fraction of integrated disk response attained as a function 

of disk potential. Curve a represents the total response for ethylamine at the disk, which 

by definition, reaches unity at the positive potential scan limit of 0.70 V. Curve b 

represents the fraction of integrated signal from ETHh^-, and curve c represents the 
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Figure 8. Disk signal for 40 fiM ethylamine, with residual current subtracted, versus 
disk potential. Rotational velocity; 900 rev min '. Disk scan rate; 50 
mV s"'. Curves: (a) total disk current for ethylamine; (b) portion of disk 
current attributable to ethylamine that is mass-transported to the surface 
concurrently with the oxidiation process (ETH^^•)• 
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Figure 9. Integrated disk response, as a fraction of the total response, versus disk 
potential. Rotational velocity: 900 rev min"'. Disk scan rate: 50 mV s' 
Curves: (a) total disk response for ethylamine; (b) disk response due to 
ETH^^•: (c) disk response due to ETHads. 
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fraction due to ETH^ds- The data represented by curves b and c indicate that at < 

0.40 V, only a small fraction of the disk response is due to ethylamine that had been pre-

adsorbed at potentials negative of where ethylamine oxidation begins. However, at disk 

potentials between 0.40 and 0.70 V, the majority of the disk signal is provided by pre-

adsorbed ethylamine. 

Determination of n and possible reaction products. As shown by the results 

from cyclic voltammetry at the disk, the response for ethylamine at Au is a linear 

function of concentration and electrode rotational velocity under certain conditions. This 

is also true when PED is used instead of cyclic voltammetry, with the advantage that the 

PED response is linear over a larger range of C* and (j)"-. The linear relationship 

between i and may be used with the Levich equation to calculate the value of n, the 

number of electrons transferred in the reaction, if the values of the other equation 

variables are known. 

Figure 10 shows PED disk current versus the square root of rotational velocity for 

three different ethylamine concentrations. For each concentration, there is a region 

where current shows a linear dependence on w'^-. Rearranging the Levich equation to 

yield 

— = Q.62nFAD '' (lO; 

allows the linear region of i-w"- plots to be used to calculate n. The slope of the line 

representing Ai/Au'^- was determined for several concentrations of ethylamine using 

ir • 
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Figure 10. Ethylamine signal at Au disk with PED versus rotational velocity. PED 
waveform: Euet = 0.2 V (toEt = 300 ms, ti,EL == 250 ms, tn^ = 50 ms); 
Eqxi) = 0.8 V (toxD = 120 ms); Ered = -0.8 V Ored = 380 ms). Curves: 
(a) 5 ixM ethylamine; (b) 10 fiM ethylamine; (c) 20 ixM ethylamine. 
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linear regression analysis. The value of A was the geometrical area of the disk electrode, 

and F had its usual value of 96,487 C eq"'. The kinematic viscosity (f) for a 0.1 M 

solution of NaOH is 0.0104 cm^ s"' [35]. Based upon the work by Cambell and Lam, the 

diffusion coefficient for ethylamine at low concentrations is approximately 1.3 * 10"' cm^ 

s"' [36]. The average value of n for four different ethylamine concentrations is shown in 

Table 1. 

Table 1. Experimentally determined n for the oxidation of ethylamine at Au in 0.1 
M NaOH, using PED at an RRDE, PED waveform: Edet = 0.2 V 
(toET ~ 300 ms, t[jEL ~ 250 ms, tnvjj = 50 ms); Eqxd = 0.8 V (toxo ~ 
ms); E|{£o = -0.8 V (tn£u = 90 ms). 

Concentration (/nM) n (eq mol"') ± std. dev. number of trials 

5 4.02 ± 0.29 3 

10 3.16 + 0.22 4 

20 2.07 ±0.11 4 

40 1.64 ± 0.22 3 

Although only regions where a linear relationship between / and were used to 

calculate n, the experimental values of n were dependent upon the concentration of the 

ethylamine. Therefore, it must be concluded that linear regions of i-in"- do not 

necessarily indicate a mass-transport limited response for ethylamine, and so it becomes 

difficult to determine n by this method. However, the maximum value of n calculated by 

the method was approximately 4 eq mol"', at an ethylamine concentration of 5 fxM. 
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The data in Table 1 can be used with the results of other studies to allow 

speculation as to the product of ethylamine oxidation in alkaline solutions. Based upon 

previous work by others at various metal and metal oxide electrodes [6, 12, 17], there are 

two possible products for the oxidation of ethylamine at Au, acetaldehyde (CHjCHO) and 

acetonitrile (CHjC^N). Acetaldehyde appears to be an unlikely choice for the reaction 

product, because it involves only a two-electron transfer. As Table 1 shows, n values up 

to 4 eq mol"' were obtained for ethylamine. Acetaldehyde also is unlikely to be the final 

product because aldehydes are highly reactive at Au in alkaline solutions, and provide a 

mass-transport limited response over a large potential region extending from -0.50 V to 

0.10 V. Further evidence against acetaldehyde was provided by the RRDE. An RRDE 

experiment similar to that shown in Figure 2 was done using 40 fxM ethylamine, but with 

a PED detection potential of -0.20 V at the ring. Using this detection potential, the ring 

shows no response for ethylamine, but is very sensitive for any aldehyde present in 

solution. No evidence of aldehyde was detected at the ring for several successive scans 

of disk potential between -1.00 and 0.70 V, and so we conclude that acetaldehyde cannot 

be the final product of ethylamine oxidation at Au in 0.10 M NaOH. 

Therefore, the oxidation of ethylamine at Au tentatively is concluded to involve a 

four-electron transfer resulting in the production of acetonitrile. The formation of 

acetonitrile may explain some of the differences observed between ethylamine and 

ethanolamine signal at Au. The oxidation of ethanolamine results in the conversion of 

the alcohol functional group to the carboxylic acid. The product, glycine, is not believed 

to strongly adsorption to the Au surface, and thus would not foul the electrode surface. 
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This perhaps explains why the reaction of ethanolamine at Au in 0.10 M NaOH is mass-

transport limited over a large potential region. Conversely, the likely product of 

ethylamine oxidation, acetonitrile, has been well-documented as being strongly adsorbed 

to metal electrodes, and because of this is used in competitive adsorption studies. We 

speculate that the formation of acetonitrile ultimately poisons the Au surface towards the 

oxidation of ethylamine, and thus necessitates potential excursions into oxide formation 

and dissolution to desorb the acetonitrile and reactivate the electrode surface for the 

oxidation of ethylamine. 

Estimation of surface coverage. The RRDE data can be used to estimate both 

the total and reversible surface coverage of ethylamine at the Au disk. For a 40 /xM 

concentration of ethylamine, the ring results (region 2) indicate that approximately 35 % 

of the total disk current is due to contributions from pre-adsorbed ethylamine. 

Multiplying the total amount of current generated for ethylamine at the disk by 35 % 

therefore yields the fraction of disk signal due to pre-adsorbed ethylamine. Once the 

current from pre-adsorbed ethylamine is integrated to yield charge, it can be converted 

into moles of ethylamine using 

N = Q/nF (11) 

where Q is charge (Coulombs) and N is moles. Futhermore, by multiplying the moles of 

pre-adsorbed ethylamine by Avogadro's number (N^ = 6.023 * 10") the number of 

molecules of pre-adsorbed ethylamine is obtained. Surface coverage, defined here as the 

number of adsorbed molecules divided by the total number of Au atoms present on the 

disk surface, can be estimated by assuming the Au surface has a roughness factor near 

r -
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unity [37]. Thus, the true area of the disk is approximated by the geometric area (cm^). 

By multiplying the geometric area by an estimated Au surface density of 10'^ atoms cm'^, 

the total number of disk surface sites is found. Using data from three separate trials, the 

total coverage of adsorbed ethylamine on Au was estimated to be approximately 0.7 

monolayers. As stated above, about three-fourths of this is reversibly adsorbed with 

hydroxide, and will desorb at potentials less than -0.5 V. Thus, the reversibly adsorbed 

ethylamine accounts for about 0.5 monolayers of surface coverage. Though the data 

from the RRDE experiments allows only for calculation of only an approximate surface 

coverage, the results were relatively consistent for the three trials (less than 0.1 

monolayers difference). The calculated surface coverage depended slightly upon the 

concentration of ethylamine in solution. However, the maximum calculated surface 

coverage never exceeded one monolayer. 
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CONCLUSIONS 

The electrochemical behavior of ethylamine at Au was studied using cyclic 

voltammetry at the disk and PED at the ring of an RRDE. The disk results indicate that 

the oxidation of ethylamine at Au is not entirely under either mass-transport or surface 

control. Instead, the reaction is under mixed control, and dependent upon the formation 

of catalytic surface oxide. The ring response permits a more complete characterization of 

the processes responsible for the oxidation of ethylamine at the disk, especially as to the 

role adsorption plays in the oxidation process. Using the RRDE about one-third of the 

total disk response was found to be from ethyalmine pre-adsorbed at potentials negative 

of where ethylamine oxidation occurs, with the remaining two-thirds due to ethylamine 

mass-transported to the disk surface concurrently with its oxidation. The ring data also 

indicated that there are two types of adsorption occurring on Au. Approximately 75% of 

the ethylamine adsorbed on the Au surface is reversibly co-adsorbed with hydroxide 

anion. The remaining 25% is the result of ethylamine chemisorbed to the reduced Au 

surface. The maximum surface coverage for ethylamine on Au was estimated to be less 

than one monolayer. 
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GENERAL CONCLUSIONS 

Separations of amines and alkanolamines were performed on a multimodal high 

performance liquid chromatography (HPLC). The separation relied upon both cation-

exchange and reverse-phase retention mechanisms of the mixed-bed column, and 

permitted baseline resolution of isomers using only isocratic elution. Diamines were not 

capable of being eluted off the multimodal column. This was attributed to their divalency 

in acidic eluents, which caused excessive adsorption onto the high-capacity multimodal 

stationary phase. Therefore, a low-capacity cation-exchange column functionalized with a 

carboxylic acid was used instead. 

The response for each class of amine compounds differs at a Au electrode, and so 

voltammetry was used to optimize the pulsed electrochemical detection (FED) waveform 

used with HPLC. For alkanolamines, the optimum detection potential was less than 0.2 

V. For the amines, cyclic and pulsed voltammetry showed that the optimum detection 

potential depended upon the concentration of acetonitrile in the mobile phase. The best 

signal-to-noise ratios were obtained for amines at a detection potential of 0.2 V, but more 

positive detection potentials also provided reasonable response. For diamines, a detection 

potential of between 0.4 V and 0.6 V was indicated, especially in solutions containing 

more than 10% acetonitrile. The effect of acetonitrile on the signal obtained for amine 

compounds at Au was attributed to the ability of acetonitrile to compete with the amines 

for adsorption sites on the Au surface. 

Coupled with pulsed electrochemical detection (PED), the determination of 
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alkanolamines, amines and diamines was shown to be both sensitive and reproducible. 

Limits of detection (S/N = 3) using a 25 fiL injection loop were 20 nM (500 fmol) for 

alkanolamines, 100 nM (2.5 pmol) for amines, and 200 nM (5.0 pmol) for diamines. 

For both alkanolamines and amines, the relative standard deviation (RSD) for several 

successive injections was less than 0.5%. 

To investigate the voltammetric basis for amine response at Au, a new application 

of pulsed detection was demonstrated in which PED was applied to the ring of an RRDE. 

Simple amines and amino alcohols were shown to undergo potential-dependent adsorption 

at the Au disk in alkaline solutions, with a large percentage of the total adsorption being 

reversible. Maximum amine surface coverage was found at potentials between -0.5 V 

and 0.1 V. The similar results for amines and alkanolamines suggests that, for 

alkanolamines, the alcohol group does not affect the adsorption process. The results for 

glycine at Au differ from the other amines studied, suggesting that glycine adsorption is 

not controlled solely by the amine group, but is influenced by the carboxylate moiety as 

well. 

Understanding the potential dependence of amine adsorption allows the PED 

waveform parameters to be chosen such that surface coverage is maximized. By 

maximizing surface coverage, more analyte is concentrated near the electrode surface and 

a larger signal is possible for amines determined by HPLC-PED. The benefit of 

promoting adsorption is most dramatic in the presence of acetonitrile, where the 

optimized PED waveform provides an order-of-magnitude improvement in aliphatic amine 

detection relative to a non-optimized waveform. 
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Using PED at the ring of an RRDE, a quantitative description of amine adsorption 

was made, emphasizing the importance of adsorption to the overall response. About a 

third of the ethylamine response at the disk was attributed to species that were pre-

adsorbed at potentials negative of where ethylamine oxidation occurs, with the remaining 

two-thirds due to ethylamine that mass-transported to the disk surface concurrently with 

its oxidation. Results showed that about 75% of the total adsorption was from ethylamine 

that is reversibly co-adsorbed with hydroxide anion. In terms of fractional surface 

coverage, this represent about 0.5 monolayers, with total surface coverage by all 

ethylamine species estimated at 0.7 monolayers. 

We anticipate that PED at the ring of an RRDE will have further application for 

monitoring adsorption at electrode surfaces. Current work in our laboratories continues 

to investigate the adsorption of both amines and sulfur compounds. Since the RRDE is 

already established as a tool for determining unstable electrode intermediates and reaction 

kinetics, we also expect that PED at the ring will have benefits in these areas as well. 

By using voltammetry at a RRDE to elucidate the mechanism and conditions responsible 

for the oxidation of amine compounds at noble metal electrodes, it is hoped that superior 

PED waveforms will be devised for amine compounds separated by HPLC and other 

chromatographic techniques. 
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